Investigation on Creep Behavior of Grade 91 Heat-Resistant Steel at 923K

Article Preview

Abstract:

Creep deformation behavior of SA387Gr91Cl2 heat-resistant steel used for steam cooler has been investigated. Creep tests were carried out using flat creep specimens machined from the normalized and tempered plate at 973K with stresses of 100, 125 and 150MPa. The minimum creep rate and rupture time dependence on applied stress was analyzed. The analysis showed that the heat-resistant steel obey Monkman-Grant and modified Monkman-Grant relationships.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-167

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. X. Chen, W. Yan, W. Wang, Y.Y. Shan, K. Yang, Constitutive equations of the minimum creep rate for 9% Cr heat resistant steels, Mater. Sci. Eng. A. 534(2012)649-653.

DOI: 10.1016/j.msea.2011.12.022

Google Scholar

[2] I. Chant, K.L. Murty, Structural materials issues for the next generation fission reactors, JOM. 62(2010)67-74.

DOI: 10.1007/s11837-010-0142-3

Google Scholar

[3] E. Barker, G.J. Lloyd, R. Pikington, Creep fracture of a 9Cr-1Mo steel, Mater. Sci. Eng. 84(1986)49-64.

DOI: 10.1016/0025-5416(86)90222-3

Google Scholar

[4] K. Laha, K.S. Chandravathi, P. Paramsewaran, K.B.S. Rao, S.L. Mannan, Characterization of microstructures across the heat-affected zone of the modified 9Cr-1Mo weld joint to understand its role in promoting type IV cracking, Metall. Mater. Trans. A. 38(2007).

DOI: 10.1007/s11661-006-9050-0

Google Scholar

[5] T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, K.K. Rink, U. Shaym, Creep deformation mechanisms in modified 9Cr-1Mo steel, J. Nucl. Mater. 423(2012)110-119.

DOI: 10.1016/j.jnucmat.2012.01.005

Google Scholar

[6] E. Barker, G.J. Lloyd, R. Pikington, Creep fracture of a 9Cr-1Mo steel, Mater. Sci. Eng. 84(1986)49-64.

DOI: 10.1016/0025-5416(86)90222-3

Google Scholar

[7] L. Kloc, V. Sklenicka, Transition from power-law to viscous creep behaviour of p-91 type heat-resistant steel, Mater. Sci. Eng. A. 234-236(1997)962-965.

DOI: 10.1016/s0921-5093(97)00364-x

Google Scholar

[8] H. Ghassemo-Armaki, R.P. Chen, K. Mauyama, M. Igarashi, Contribution of recovery mechanisms of microstructure during long-term creep of Gr. 91 steels, J. Nucl. Mater. 433(2013)23-29.

DOI: 10.1016/j.jnucmat.2012.09.026

Google Scholar

[9] W.G. Kim, J.Y. Park, S.J. Kim, J. Jang, Reliability assessment of creep rupture life for Gr. 91 steel, Mater. Des. 51(2013)1045-1051.

DOI: 10.1016/j.matdes.2013.05.013

Google Scholar

[10] T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, K.K. Rink, Creep rupture behavior of Grade 91 steel, Mater. Sci. Eng. A. 565(2013)382-391.

DOI: 10.1016/j.msea.2012.12.031

Google Scholar

[11] B.K. Choudhary, E.I. Samuel, Creep behaviour of modified 9Cr-1Mo ferritic steel, J. Nucl. Mater. 412(2011)82-89.

DOI: 10.1016/j.jnucmat.2011.02.024

Google Scholar

[12] Y.P. Zhao, J.M. Gong, J. Yong, X.W. Wang, L.M. Shen, Q.N. Li, Creep behaviours of Cr25Ni35Nb and Cr35Ni45Nb alloys predicted by modified theta method, Mater. Sci. Eng. A. 649(2016)1-8.

DOI: 10.1016/j.msea.2015.09.036

Google Scholar