Analysis on the Creep Mechanism of 12Cr-Mo-W-0.25V Steel Based on Long-Term Stress Relaxation Test Data

Article Preview

Abstract:

The current paper investigates on the creep behavior of 12Cr-Mo-W-0.25V heat resistant steel base on the long-term stress relaxation test data. It is shows that the stress relaxation curve can be divided into 2 stages: the high stress stage has higher apparent activation volume of 79~350 b3 and the low stress stage is 35~78 b3. Besides, the Helmholtz free energy at the high stress stage is 827~1034 kJ/mol which is higher than 210~252 kJ/mol of the low stress stage. Taking both apparent activation volume and activation energy into account, it is assumed that the high stress stage is mainly controlled by dislocation slip and the low stress stage is more related to diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-162

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Altenbach, K. Naumenko, Y. Gorash, Creep analysis for a wide stress range based on stress relaxation experiments, Int. J. Mod. Phys. B, 22 (2008) 5413-5418.

DOI: 10.1142/s0217979208050589

Google Scholar

[2] J.A. Daleo, K.A. Ellison, D.A. Woodford, Application of stress relaxation testing in metallurgical life assessment evaluations of GTD111 alloy turbine buckets, J. Eng. Gas Turb. Power, 121 (1999) 129-137.

DOI: 10.1115/1.2816299

Google Scholar

[3] T. Ohba, O. Kanemaru, K. Yagi, C. Tanaka, Long-term stress relaxation properties of NCF 800H alloy, J. Soc. Mater. Sci. (Japan),  46 (1997) 19-24.

DOI: 10.2472/jsms.46.3appendix_10

Google Scholar

[4] F.V. Ellis, S. Tordonato, Calculation of stress relaxation properties for type 422 stainless steel. J. Press. Vess. -T. ASME, 122 (2000) 66-71.

DOI: 10.1115/1.556152

Google Scholar

[5] D.A. Woodford, Advances in the use of stress relaxation data for design and life assessment in combustion turbines, JSME Int. J. A-Solid M. 45 (2002) 98-103.

DOI: 10.1299/jsmea.45.98

Google Scholar

[6] C.G. Ek, B. Hagström, J. kubát, M. rigdahl, Prediction of the creep behavior of polyethylene and molybdenum form stress relaxation experiments, Rheol. Acta, 25 (1986) 534-541.

DOI: 10.1007/bf01774405

Google Scholar

[7] J.H. Kim, T.S. Byun, D.T. Hoelzer, Stress relaxation behavior of nanocluster-strengthened ferritic alloy at high temperatures, J. Nucl. Mater. 425 (2012) 147-55.

DOI: 10.1016/j.jnucmat.2011.06.040

Google Scholar

[8] P. Spatig, J. Bonneville, J.L. Martin, A new method for activation volume measurements-application to Ni3(AL, HF), Mat. Sci. Eng. A-Struct. 167 (1993) 73-79.

DOI: 10.1016/0921-5093(93)90339-g

Google Scholar

[9] G.A. Sargent, H. Conrad, Stress relaxation and thermally activated deformation in a titanium-4wt percent aluminum alloy, Scripta Metall. 4 (1970) 129-133.

DOI: 10.1016/0036-9748(70)90178-x

Google Scholar

[10] A.G. Evans, R.D. Rawlings, Thermally activated deformation of crystalline materials, Phys. Status Solidi B. 34 (1969) 9-31.

DOI: 10.1002/pssb.19690340102

Google Scholar

[11] S. Wang, N. Hashimoto, Y.M. Wang, S. Ohnuki, Activation volume and density of mobile dislocations in hydrogen-charged iron, Acta Mater. 61 (2013) 4734-4742.

DOI: 10.1016/j.actamat.2013.05.007

Google Scholar

[12] V.I. Dotsenko, Stress relaxation in crystals, Phys. Status Solidi B. 93 (1979) 11-43.

Google Scholar

[13] National Research Institute for Metals, NRIM Creep Data Sheet No. 44, National Research Institute for Metals, Tokyo, (1997).

Google Scholar

[14] D. Caillard, J.L. Martin, Thermal activation mechanisms in crystal plasticity, Pergamon, Amsterdam, (2003).

Google Scholar

[15] L. Lu, T. Zhu, Y.F. Shen, M. Dao, K. Lu, S. Suresh, Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper, Acta Mater. 57 (2009) 5165-5173.

DOI: 10.1016/j.actamat.2009.07.018

Google Scholar

[16] B.H. Zhang, Calculation of self-diffusion coefficients in iron, AIP Adv. 4 (2014) 017128-1-017128-6.

Google Scholar