[1]
P. J. Ennis, A. Czyrska-Filemonowicz. Recent advances in creep-resistant steels for power plant applications. Sadhana - Academy Proceedings in Engineering Sciences, 28 (2003) 709-730.
DOI: 10.1007/bf02706455
Google Scholar
[2]
X. W. Wang, J. M. Gong, Y. Jiang, Y. P. Zhao, M. H. Yu. Modeling of Low Cycle Behavior of P92 Steel Based on Cyclic Plasticity Constitutive Equations. Applied Mechanics and Materials, 750 (2015) 41-46.
DOI: 10.4028/www.scientific.net/amm.750.41
Google Scholar
[3]
M. Yurechko, C. Schroer, A. Skrypnik, O. Wedemeyer, J. Konys. Creep-to-rupture of the steel P92 at 650C in oxygen-controlled stagnant lead in comparison to air. Journal of Nuclear Materials 432 (2013) 78-86.
DOI: 10.1016/j.jnucmat.2012.07.029
Google Scholar
[4]
B. Fournier, S. Maxime, C. Christel, N. Michel, R. Véronique, B. Annick, P. André. High temperature creep-fatigue-oxidation interactions in 9-12% Cr martensitic steels. Journal of Nuclear Materials, 386 (2009) 418-421.
DOI: 10.1016/j.jnucmat.2008.12.139
Google Scholar
[5]
T.P. Farragher, N.P. O'Dowd, S. Scully, S.B. Leen, Thermo-mechanical characterization of P91 power plant componrents, in: Twenty First International Workshop on Computational Mechanics of Materials, 22-24 August, Limerick, Ireland, (2011).
Google Scholar
[6]
Y. P. Gong, C. J. Hyde, W. Sun, T.H. Hyde. Determination of material properties in the Chaboche unified viscoplasticity model[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 224(2010).
DOI: 10.1243/14644207jmda273
Google Scholar
[7]
W. Sun, D.W.J. Tanner, T.H. Hyde, A.A. Saad. Thermal-mechanical fatigue behavior of 9-12% Cr power plant steels and pipes. Sustainable power generation and supply (SUPERGEN 2012), International coference, 8-9 Sept. 2012 1-8.
DOI: 10.1049/cp.2012.1807
Google Scholar
[8]
X. W. Wang, Y. Jiang, J. M. Gong, Y. P. Zhao, X. Huang. Characterization of Low Cycle Fatigue of Ferritic-Martensitic P92 Steel: Effect of Temperature. steel research international, (2015).
DOI: 10.1002/srin.201500218
Google Scholar
[9]
X.W. Wang, J. M. Gong,Y. P. Zhao, Y. F. Wang, M. H. Yu. Characterization of Low Cycle Fatigue Performance of New Ferritic P92 Steel at High Temperature: Effect of Strain Amplitude. steel research international, 86(2015) 1046-1055.
DOI: 10.1002/srin.201400246
Google Scholar
[10]
B. Čermelj, P. Može, F. Sinur. On the prediction of low-cycle fatigue in steel welded beam-to-column joints. Journal of Constructional Steel Research, 117 (2016) 49-63.
DOI: 10.1016/j.jcsr.2015.09.017
Google Scholar
[11]
R. Petráš, V. Škorík, J. Polák. Thermomechanical fatigue and damage mechanisms in Sanicro 25 Steel. Materials Science & Engineering A, 650 (2016) 52-62.
DOI: 10.1016/j.msea.2015.10.030
Google Scholar
[12]
M. Li, R. A. Barrett, S. Scully, N. M. Harrison, S. B. Leen, P. E. O'Donoghue. Cyclic plasticity of welded P91 material for simple and complex power plant connections. International Journal of Fatigue, 87(2016) 391-404.
DOI: 10.1016/j.ijfatigue.2016.02.005
Google Scholar