[1]
U. Kocabicak, M. Firat, Numerical analysis of wheel cornering fatigue tests, Eng. Fail. Ana. 8 (2001) 339-354.
DOI: 10.1016/s1350-6307(00)00031-5
Google Scholar
[2]
X. Wang, X. Zhang, Simulation of dynamic cornering fatigue test of a steel passenger car wheel, Int. J. Fatigue. 32 (2010) 434-442.
DOI: 10.1016/j.ijfatigue.2009.09.006
Google Scholar
[3]
Z.G. Zheng, T. Sun, X.Y. Xu, S.Q. Pan, S. Yuan, Numerical simulation of steel wheel dynamic cornering fatigue test, Eng. Fail. Ana. 39 (2014) 124-134.
DOI: 10.1016/j.engfailanal.2014.01.021
Google Scholar
[4]
W.J. Kang, G.H. Kim, Analysis of manufacturing effects on fatigue failure of an automotive component using finite element methods, Fatigue. Fract. Engng. Mater. Struct. 32 (2009) 619-630.
DOI: 10.1111/j.1460-2695.2009.01368.x
Google Scholar
[5]
C.M. Ni, R.J. Yang, A concurrent engineering approach to integrate forming effects into structure design and analysis of stamped parts, SAE. Technical paper, 880916.
DOI: 10.4271/880916
Google Scholar
[6]
P. Li , D,M. Maijer, T. C. Lindley, P. D. Lee, A through process model of the impact of in-service loading, and microstructure on the final fatigue life of an A356 automotive wheel, Mater. Sci. Eng. A. 460 (2007) 20–30.
DOI: 10.1016/j.msea.2007.01.076
Google Scholar
[7]
D.A. Oliverira, M.J. Worswick, R. Grantab, Effect of forming process variables on the crashworthiness of aluminium alloy tubes, Int. J. Impact. Eng. 32 (2006) 824-846.
DOI: 10.1016/j.ijimpeng.2005.06.006
Google Scholar
[8]
H. Huh, K.P. Kim, S.H. Kim, Crashworthiness of Front Side Members in an Auto-body Considering the Fabrication history, Int. J. Mech. Sci. 45 (2003) 1645-1660.
DOI: 10.1016/j.ijmecsci.2003.09.022
Google Scholar
[9]
W. R. Wang, G. L. Chen, Z.Q. Lin, The study on the fatigue FEM analysis considering the effect of stamping, Mater. Des. 30 (2009) 1588-1594.
DOI: 10.1016/j.matdes.2008.07.046
Google Scholar
[10]
R.L. Fan, J. Chen, Automotive structure performance analysis considering the effect of stamping history, J. Plasticity. Eng. 16 (2009) 18-23. (in chinese).
Google Scholar
[10]
D. Scrimieri, S.M. Afazov, Fast mapping of finite element field variables between meshes with different densities and element types, Adv. Eng. Soft. 67 (2014) 90-98.
DOI: 10.1016/j.advengsoft.2013.08.003
Google Scholar
[11]
J.H. Yoon, H. Huh, Efficiency enhancement in sheet metal forming analysis with a mesh regularization method, J. Mater. Process. Tech. 140 (2003) 616–621.
DOI: 10.1016/s0924-0136(03)00801-x
Google Scholar
[12]
Q.S. Liu, J.T. Xi, Z.Q. Wu, An energy-based surface flattening method for flat pattern development of sheet metal components, Int. J. Adv. Manuf. Technol. 68 (2013) 1155-1166.
DOI: 10.1007/s00170-013-4908-y
Google Scholar
[13]
P. Hu, Y.D. Bao, Crashworthiness Simulation of Automobile Body Part Considering the Formability Effects of the Part Sheet Metal, Acta. Mech. Solida. Sin. 27 (2006) 148-158.
Google Scholar
[14]
D.H. Liu, G.Y. Li, Mesh Variables Mapping Algorithm Used in Car Crash Simulation and Its Verification, J. Mech. Eng. 45 (2009) 218-223. (in chinese).
DOI: 10.3901/jme.2009.12.218
Google Scholar
[15]
A. Bucher, A. Meyer, A comparison of mapping algorithms for hierarchical adaptive FEM in finite elasto-plasticity, Comput. Mech. 39 (2007) 521-536.
DOI: 10.1007/s00466-006-0051-z
Google Scholar