A DFT Investigation of the Molecular Structure and UV Absorption Spectra of 2-Ethylhexyl 2-Hydroxybenzoate (Octisalate) and Meta-Substituted 2-Ethylhexyl 2-Hydroxybenzoate: Sunscreen Applications

Article Preview

Abstract:

2-ethylhexyl 2-hydroxybenzoate (octisalate) is one of organic compounds containing in sunscreen products to absorb ultraviolet radiation. Density Functional Theory (DFT) was used to investigate the molecular structure and the ultraviolet (UV) absorption spectrum of 2-ethylhexyl 2-hydroxybenzoate and meta-substituted 2-ethylhexyl 2-hydroxybenzoate to model the novel sunscreen compounds. The geometry optimizations and frequency calculations were done at B3LYP/6-311++G(d,p) level of theory. The 10 vertical excitation calculations were performed by Time-Dependent Density Functional Theory (TD-DFT) at B3LYP/6-311++G(d,p) level. The solvent effects were taken into account by using the Polarizable Continuum Model (CPCM). It was found that the intramolecular hydrogen bond occurred in the 2-ethylhexyl 2-hydroxybenzoate structure. The UV absorption spectrum in the UVA and UVB regions are π→π* transitions (HOMO→LUMO transitions). The calculated UV absorption spectrum of the 2-ethylhexyl 2-hydroxybenzoate and its derivatives are significantly affected by the substitution groups.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] F.P. Gasparro, M. Mitchnick, J.F. Nash, A review of sunscreen safety and efficacy, Photochem. Photobiol. 68 (1998) 243–256.

DOI: 10.1111/j.1751-1097.1998.tb09677.x

Google Scholar

[2] L.H. Kligman, F.J. Akin, A.M. Kligman, The contributions of UVA and UVB to connective tissue damage in hairless mice, J. Invest. Dermatol. 84 (1985) 272–276.

DOI: 10.1111/1523-1747.ep12265353

Google Scholar

[3] J. Marto, L.F. Gouveia, B.G. Chiari, A. Paiva, V. Isaac, P. Pinto, P. Simões, A.J. Almeida, H.M. Ribeiro, The green generation of sunscreens: Using coffee industrial sub-products, Industrial Crops and Products 80 (2016) 93–100.

DOI: 10.1016/j.indcrop.2015.11.033

Google Scholar

[4] R.M. Amin, S.A. Elfeky, T. Verwanger, B. Krammer, A new biocompatible nanocomposite as a promising constituent of sunscreens, Materials Science and Engineering C 63 (2016) 46–51.

DOI: 10.1016/j.msec.2016.02.044

Google Scholar

[5] W-Y. Hsiao, S-J. Jiang, C-H. Feng, S-W. Wang, Y-L. Chen, Determining ultraviolet absorbents in sunscreen products by combining direct injection with micelle collapse on-line preconcentration capillary electrophoresis, J. Chromatogr. A 1383 (2015).

DOI: 10.1016/j.chroma.2015.01.039

Google Scholar

[6] A. Morlando, D. Cardillo, T. Devers, K. Konstantinov, Titanium doped tin dioxide as potential UV filter with low photocatalytic activity for sunscreen products, Materials Letters 171 (2016) 289–292.

DOI: 10.1016/j.matlet.2016.02.094

Google Scholar

[7] D.R. Sambandan, D. Ratner, Sunscreens: An overview and update, J AM ACAD DERMATOL, 64 (2011) 748-758.

Google Scholar

[8] Camile L. Hexsel, Scott D. Bangert, Adelaide A. Hebert, Henry W. Lim, Current sunscreen issues: 2007 Food and Drug Administration sunscreen labelling recommendations and combination sunscreen/insect repellent products, J AM ACAD DERMATOL, 59 (2008).

DOI: 10.1016/j.jaad.2008.03.038

Google Scholar

[9] A. Beeby, A.E. Jones, Photophysical properties of N-acetyl-menthyl anthranilate, Photochem. Photobiol., 64 (2001) 109–116.

DOI: 10.1016/s1011-1344(01)00197-x

Google Scholar

[10] T. Karthick, V. Balachandran, S. Perumal, A. Nataraj, Spectroscopic studies, HOMO-LUMO and NBO calculations on monomer and dimer conformer of 5-nitrosalicylic acid, J. Mol. Struct, 1005 (2011) 192-201.

DOI: 10.1016/j.molstruc.2011.08.050

Google Scholar

[11] B.A.M. Corrêa, A.S. Gonçalves, A.M.T. de Souza, C.A. Freitas, L.M. Cabral. M.G. Albuquerque, H.C. Castro, E.P. dos Santos, C.R. Rodrigues, Molecular modeling studies of the structural, electronic, and UV absorption properties of benzophenone derivatives, J. Phys. Chem. A, 116 (2012).

DOI: 10.1021/jp306130y

Google Scholar

[12] Gaussian 09, Revision D. 01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2009).

Google Scholar

[13] A.R. ALLOUCHE, Gabedit - A graphical user interface for computational chemistry softwares, Journal of Computational Chemistry, 32 (2011) 174-182.

DOI: 10.1002/jcc.21600

Google Scholar