Inclusion Complex of Plai Oil and β-Cyclodextrin

Article Preview

Abstract:

Inclusion complex of β-cyclodextrin (β-CD) and Plai (Zingiber cassumunar) oil was prepared using a simple co-precipitation method at β-CD to Plai oil in different ratios. The inclusion complexes were characterized using Fourier transform-infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The FT-IR absorption bands of inclusion complex at 3600-3200 cm-1 were broader and shifted toward lower frequencies compared with that of pure β-CD (3359 cm-1). DSC of the inclusion complexes showed two endothermic peaks shifted to lower temperatures (90-100°C and 295-300°C) compared to that of β-CD. The different physicochemical characteristic could be an indication of an embedded guest molecule in the β-CD cavities in the inclusion complex preparation.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] G. Astraya, C. Gonzalez-Barreirob, J.C. Mejutoa, R. Rial-Oterob, J. Simal-Gándara, A review on the use of cyclodextrins in food, Food Hydrocoll. 23 (2009) 1631-1640.

DOI: 10.1016/j.foodhyd.2009.01.001

Google Scholar

[2] M. Singh, R. Sharma, U.C. Banerjee, Biotechnological applications of cyclodextrins, Biotechnol. Adv. 20 (2002) 341-359.

Google Scholar

[3] F. Hirayama, K. Uekama, Cyclodextrin-based controlled drug release system, Adv. Drug Deliv. Revs. 36 (1999) 125-141.

DOI: 10.1016/s0169-409x(98)00058-1

Google Scholar

[4] M. Centini, M. Maggiore, M. Casolaro, M. Andreassi, R.M. Facino, C. Anselmi, Cyclodextrins as cosmetic delivery systems, J. Incl. Phenom. Macrocycl. Chem. 57 (2007) 109-112.

DOI: 10.1007/s10847-006-9212-0

Google Scholar

[5] K. Uekama, F. Hirayama, T. Irie, Cyclodextrin drug carrier systems, Chem. Rev. 98 (1998) 2045-(2076).

DOI: 10.1021/cr970025p

Google Scholar

[6] P.A.P. Cevallos, M.P. Buera, B.E. Elizalde, Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability, J. Food Eng. 99 (2010) 70-75.

DOI: 10.1016/j.jfoodeng.2010.01.039

Google Scholar

[7] L.E. Hilla, C. Gomesa, T.M. Taylor, Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications, LWT - Food Sci. Technol. 51(2013).

DOI: 10.1016/j.lwt.2012.11.011

Google Scholar

[8] R. Jeenapongsa, K. Yoovathaworn, K.M. Sriwatanakul, U. Pongprayoon , K. Sriwatanakul, Anti-inflammatory activity of (E)-1-(3, 4-dimethoxyphenyl) butadiene from Zingiber cassumunar Roxb. J. Ethnopharmacol. 87 (2003) 143-148.

DOI: 10.1016/s0378-8741(03)00098-9

Google Scholar

[9] A. Panthong , D. Kanjanpothi, W. Niwatanant, P. Tuntiwachwutiikul, V. Reutrakul, Anti-inflammatory activity of compound D {(E)-4-(3', 4'-dimethoxyphenyl)but-3-en-2-ol} isolated from Zingiber cassumunar Roxb., Phytomedicine 4 (1997), 207-212.

DOI: 10.1016/s0944-7113(97)80069-4

Google Scholar

[10] http: /e-cosmetic. fda. moph. go. th/frontend/theme_4/index. php Accessed on March 29, (2016).

Google Scholar

[11] I. Bratu, S. Astilean, C. Ionnesc, E. Indrea, J.P. Huvenne, P. Legrand, FT-IR and X-ray spectroscopic investigations of Nadiclofenac-cyclodextrin interactions, Spectrochim. Acta Mol. Biomol. Spectrosc. 54 (1998) 191-196.

DOI: 10.1016/s1386-1425(97)00218-7

Google Scholar

[12] S. Songkro, N. Hayook, J. Jaisawang, D. Maneenuan, T. Chuchome, N. Kaewnopparat, Investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent, J. Incl. Phenom. Macrocycl. Chem. 72(2012).

DOI: 10.1007/s10847-011-9985-7

Google Scholar

[13] R. Ficarra, P. Ficarra, M.R. Di Bella, D. Raneri, S. Tommasini, M.L. Calabro, M.C. Gamberini, C. Rustichelli, Study of b-blockers: b-cyclodextrins inclusion complex by NMR, DSC, X-ray and SEM investigation, J. Pharm. Biomed. Anal. 23(2000) 33-40.

DOI: 10.1016/s0731-7085(00)00261-2

Google Scholar