Color Transition Properties of Water Dispersible Polydiacetylene Particles Conjugated with the Thermosensitive Polymer

Article Preview

Abstract:

An assembly of diacetylene molecules is necessary to progress a topochemical reaction as UV-irradiated polymerization. In this study, we attempt to regularly assemble 10, 12- pentacosadiynoic acid (PCDA) by freezing the solution, followed by lyophilization. Dried PCDA assembly was easily dispersed in aqueous solution by sonication. Irradiation of UV light can promote polymerization reaction of PCDA judging from a color change of the solution into blue. A color transition of the polyPCDA-dispersed solution from blue to red was observed at approximately 56°C due to distortion of its π-conjugated system. A color transition temperature could be controlled by hybridization with thermosensitive hydroxypropyl cellulose, of which lower critical solution temperature appears around 38-39°C. By synchronizing to coli-globule transition of HPC in aqueous media, blue-red transition response of water-dispersed polyPCDA could be induced by changing conformation of surrounded polymer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-43

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Tieke, G. Lieser, G. Wegner, Polymerization of diacetylenes in multilayers, J. Polym. Sci.: Polym. Chem. Ed. 17(6) (1979) 1631-1644.

DOI: 10.1002/pol.1979.170170607

Google Scholar

[2] A. Sarkar, S. Okada, H. Nakanishi, Polydiacetylene from asymmetrically substituted diacetylenes containing heteroaryl side groups for third-order nonliear optical properties, Macromolecules 31(26) (1998) 9174-9180.

DOI: 10.1021/ma981205j

Google Scholar

[3] S. Okada, S. Peng, W. Spevak, D. Charych, Color and Chromism of polydiacetylene vesicles, Acc. Chem. Res. 31(5) (1998) 229-239.

DOI: 10.1021/ar970063v

Google Scholar

[4] M. Leclerc, Optical and electrochemical transducers based on functionalized conjugaed polymers, Adv. Mater. 11(18) (1999) 1491-1498.

DOI: 10.1002/(sici)1521-4095(199912)11:18<1491::aid-adma1491>3.0.co;2-o

Google Scholar

[5] D. T. McQuade, A. E. Pullen, T. M. Swager, Conjugated polymer-based chemical sensors, Chem. Rev. 100(7) (2000) 2537-2574.

DOI: 10.1021/cr9801014

Google Scholar

[6] A. A. Deckert, L. Fallon, L. Kiernan, C. Cashin, A. Perrone, T. Encalarde, Kinetics of the reversible thermochromism in Langmuir-Blodgett films of Cd2+ salts of polydiacetylenes studied using UV-Vis spectroscopy, Langmuir 10(6) (1994) 1948-(1954).

DOI: 10.1021/la00018a054

Google Scholar

[7] N. Mino, H. Tamura, K. Ogawa, Analysis of coloc transitions and changes on Langmuir-Blodgett films of a polydiacetylene derivative, Langmuir 7(10) (1991) 2336-2341.

DOI: 10.1021/la00058a060

Google Scholar

[8] D. Charych, Q. Cheng, A. Reichert, G. Kuziemko, M. Stroh, J. O. Nagy, W. Spevak, R. C. Stevens, A 'litmus testʼ for molecular recognition using artificial membranes, Chem. Biol. 3(2) (1996) 113-120.

DOI: 10.1016/s1074-5521(96)90287-2

Google Scholar

[9] J. M. Kim, J. S. Lee, J. S. Lee, S. Y. Woo, D. J. Ahn, Unique effects of cyclodextrins on the formation of colorimetric transition of polydiacetylene vesicles, Macromol. Chem. Phys. 206(22) (2005) 2299-2306.

DOI: 10.1002/macp.200500331

Google Scholar

[10] N. Kato, F. Takahashi, Acceleration of deswelling of poly(N-isopropylacrylamide) hydrogel by the treatment of a freeze-dry and hydration process, Bull. Chem. Soc. Jpn. 70(6) (1997) 1289-1295.

DOI: 10.1246/bcsj.70.1289

Google Scholar

[11] N. Kato, S. H. Gehrke, Microporous, fast response cellulose ether hydrogel prepared by freeze-drying, Colloids and Surf. B: Biointerfaces 38(3-4) (2004) 191-196.

DOI: 10.1016/j.colsurfb.2004.01.018

Google Scholar

[12] D. C. Harsh, S. H. Gehrke, Controlling the swelling characteristics of temperature-sensitive cellulose ether hydrogels, J. Control. Release 17(2) (1991) 175-186.

DOI: 10.1016/0168-3659(91)90057-k

Google Scholar

[13] B. Kabra, S. H. Gehrke, R. J. Spontak, Microporous responsive hydroxypropyl cellulose gels. 1. Synthesis and microstructure, Macromolecules 31(7) (1998) 2166-2173.

DOI: 10.1021/ma970418q

Google Scholar