Effects of Micropores on Processing and Properties of Porous Irons

Article Preview

Abstract:

Porous irons with only micropores were produced through powder metallurgy route. Corn starch of small particle size (5-15μm) was utilized to regulate the densification of green compacts. The structural and mechanical properties of porous irons sintered at different temperatures were evaluated. The porosities increased with increasing the starch content, which reduced compressive strength and increased volumetric shrinkage. The compressive yield stress increased with increasing sintering temperature. It was also found that the effect of sintering temperature on the microstructure and compressive properties was more obvious when green compacts were less densified. Moreover, volumetric shrinkage of porous irons without adding starch remains in a quite low level for different sintering temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-32

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46(6) (2001) 559-563.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[2] L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties, second ed., Cambridge University Press, Cambridge, UK, (1997).

Google Scholar

[3] B. H. Smith, S. Szyniszewski, J. F. Hajjar, et al., Steel foam for structures: A review of applications, manufacturing and material properties, J. Constr. Steel Res. 71 (2012) 1-10.

DOI: 10.1016/j.jcsr.2011.10.028

Google Scholar

[4] M. F. Ashby, A. Evans, N. A. Fleck, et al., Metal Foams: A Design Guide, Elsevier Science, Boston, MA, (2000).

Google Scholar

[5] N. Bekoz, E. Oktay, High temperature mechanical properties of low alloy steel foams produced by powder metallurgy, Mater. Des. 53 (2014) 482-489.

DOI: 10.1016/j.matdes.2013.07.050

Google Scholar

[6] N. Bekoz, E. Oktay, Effects of carbamide shape and content on processing and properties of steel foams, J. Mater. Process. Technol. 212(10) (2012) 2109-2116.

DOI: 10.1016/j.jmatprotec.2012.05.015

Google Scholar

[7] N. Bekoz, E. Oktay, Mechanical properties of low alloy steel foams: Dependency on porosity and pore size, Sci. Eng. A 576 (2013) 82-90.

DOI: 10.1016/j.msea.2013.04.009

Google Scholar

[8] M. Bram, C. Stiller, H. P. Buchkremer, et al., High-Porosity Titanium, Stainless Steel, and Superalloy Parts, Adv. Eng. Mater. 2(4) (2000) 196-199.

DOI: 10.1002/(sici)1527-2648(200004)2:4<196::aid-adem196>3.0.co;2-k

Google Scholar

[9] Y. M. Z. Ahmed, B. A. Iskander, M. Ibrahim, et al., Mechanical properties and porosity relationship of porous iron compacts, Powder Metall. 52(1) (2009) 72-79.

DOI: 10.1179/174329008x315584

Google Scholar

[10] Z. Esen, Ş. Bor, Processing of titanium foams using magnesium spacer particles, Scr. Mater. 56(5) (2007) 341-344.

DOI: 10.1016/j.scriptamat.2006.11.010

Google Scholar

[11] N. Michailidis, F. Stergioudi, A. Tsouknidas, et al., Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material, Mater. Sci. Eng. A 528(3) (2011) 1662-1667.

DOI: 10.1016/j.msea.2010.10.088

Google Scholar

[12] A. Laptev, M. Bram, H. P. Buchkremer, et al., Study of production route for titanium parts combining very high porosity and complex shape, Powder Metall. 47(1) (2004) 85-92.

DOI: 10.1179/003258904225015536

Google Scholar

[13] Z. Esen, Ş. Bor, Characterization of Ti–6Al–4V alloy foams synthesized by space holder technique, Mater. Sci. Eng. A 528(7-8) (2011) 3200-3209.

DOI: 10.1016/j.msea.2011.01.008

Google Scholar

[14] N. Bekoz, E. Oktay, The role of pore wall microstructure and micropores on the mechanical properties of Cu–Ni–Mo based steel foams, Mater. Sci. Eng. A 612 (2014) 387-397.

DOI: 10.1016/j.msea.2014.06.064

Google Scholar

[15] B. Wang, E. Zhang, On the compressive behavior of sintered porous coppers with low-to-medium porosities-Part II: Preparation and microstructure, Int. J. Mech. Sci, 50(3) (2008) 550-558.

DOI: 10.1016/j.ijmecsci.2007.08.003

Google Scholar

[16] I. Oh, N. Nomura, N. Masahashi, et al., Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta Mater. 49(12) (2003) 1197-1202.

DOI: 10.1016/j.scriptamat.2003.08.018

Google Scholar

[17] D. P. Mondal, H. Jain, S. Das, et al., Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder, Mater. Des. 88 (2015) 430-437.

DOI: 10.1016/j.matdes.2015.09.020

Google Scholar

[18] C. Park, S. R. Nutt, Anisotropy and strain localization in steel foam, Mater. Sci. Eng. A 299(1-2) (2001) 68-74.

Google Scholar