Effect of Nb and Mn Substitution on Bi0.5Na0.5TiO3 Lead-Free Piezoceramics with Enhanced Electrical Properties

Article Preview

Abstract:

The perovskite oxide Bi0.5Na0.5MnxTi1-xO3, Bi0.5Na0.5NbxTi1-xO3, Bi0.5Na0.5 (Mn0.5Nb0.5)xTi1-xO3 and Bi0.5Na0.5TiO3 ceramics (x=0.25%) were prepared via the conventional solid state reaction method. The role of Mn as an acceptor, Nb as a donor and (Mn0.5Nb0.5) substitution at B site in BNT lead-free piezoceramics was investigated. The (Mn0.5Nb0.5) substitution led to the inhibited of reduction of Ti4+ to Ti3+ and gave rise to large defect-dipole clusters containing highly localized electrons which should be responsible for the increase of Tc and Td. The ferroelectric properties and field-induced strains were both improved by Mn-acceptor and (Mn0.5Nb0.5) co-doped. The fatigue-resistant properties of Nb doped BNT ceramics were comparable to BNT ceramics, Mn doped ceramics were found to have significantly improved fatigue-resistant properties, while almost no profound fatigue was observed in BNT-MnNb ceramics after switching over 106 cycles at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-14

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Cross, Lead-free at last, Nature, 432 (2004) 24.

Google Scholar

[2] R. A. Eichel, H. Kungl, Recent developments and future perspectives of lead-free ferroelectrics, Funct. Mater. Lett. 3 (2010) 1.

DOI: 10.1142/s179360471000097x

Google Scholar

[3] D. Damjanovic, N. Klein, L. Jin, V. Porokhonskyy, What can be expected from lead-free piezoelectic materials, Funct. Mater. Lett. 3 (2010) 5.

DOI: 10.1142/s1793604710000919

Google Scholar

[4] G. A. Smolensky, V. A. Isupov, A. I. Agranovskaya, N. N. Ktainik, New ferroelectrics of complex composition. IV, Sov. Phy. Solid State 2 (1961) 2651.

Google Scholar

[5] T. Takenaka, K.I. Maruyama, K. Sakata, Thermodynamic properties and phase equilibria of the potassium-indium system by electromotive force measurements, Jpn. J. Appl. Phys. 30 (1991)2236.

DOI: 10.1088/0953-8984/3/11/018

Google Scholar

[6] J. Rödel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, D. Damjanovic, Perspective on the Development of Lead-free Piezoceramics, J. Am. Ceram. Soc. 92(6) (2009) 1153-1177.

DOI: 10.1111/j.1551-2916.2009.03061.x

Google Scholar

[7] K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic, AH Dordrecht, The Netherlands, 1997).

Google Scholar

[8] G. H. Haertling, Ferroelectric Ceramics: History and Technology, J. Am. Ceram. Soc. 82(4)(1999) 797-818.

Google Scholar

[9] D. Berlincourt, Piezoelectric and Piezomagnetic Materials and Their Function in Transducers, J. Acoust. Soc. Am. 91 (1992) 3034-3040.

Google Scholar

[10] A. Albareda, R. Pérez, J. E. García, D. A. Ochoa, V. Gomis, J. A. Eiras, Non-linear dielectric and piezoelectric response in undoped and Nb5+ or Fe3+ doped PZT ceramic system, J. Eur. Ceram. Soc. 27(13-15) (2007) 4025.

DOI: 10.1016/j.jeurceramsoc.2007.02.086

Google Scholar

[11] T. M. Kamel, G. D. With, Poling of hard ferroelectric PZT ceramics, J. Eur. Ceram. Soc. 28(9) (2008) 1827.

Google Scholar

[12] M. Morozov, D. Damjanovic, N. Setter, The nonlinearity and subswitching hysteresis in hard and soft PZT, J. Eur. Ceram. Soc. 25(12) (2005) 2483.

DOI: 10.1016/j.jeurceramsoc.2005.03.086

Google Scholar

[13] M. I. Morozov, D. Damjanovic, Hardening-softening transition in Fe-dopedPb(Zr, Ti)O3ceramics and evolution of the third harmonic of the polarization response, J. Appl. Phys. (2008), 104: 034107-034107-8.

DOI: 10.1063/1.2963704

Google Scholar

[14] Y. Hiruma, H. Nagata, T. Takenaka, Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics, J. Appl. Phys. 105 (2009) 084112.

DOI: 10.1063/1.3115409

Google Scholar

[15] M. Zhu, H. Hu, N. Lei, Y. Hou, H. Yan, Dependence of depolarization temperature on cation vacancies and lattice distortion for lead free 74(Bi1/2Na1/2)TiO3–20. 8 (Bi1/2K1/2) TiO3–5. 2BaTiO3ferroelectric ceramics, Appl. Phys. Lett. 94 (2009).

DOI: 10.1063/1.3130736

Google Scholar

[16] Y. L. Huang, Y.C. Lee, D. C. Tsai, J. D. Chiu, F. S. Shieu, Effects of manganese oxide addition and reductive atmosphere annealing on the phase stability and microstructure of yttria stabilized zirconia, J. Eur. Ceram. Soc. 33(13-14) (2013) 2609.

DOI: 10.1016/j.jeurceramsoc.2013.04.004

Google Scholar

[17] H. Kaftelen, M. Tuncer,S. Tu, S. Repp,H. Göçmez,R. Thomann,S. Weber,E. Erdem, Mn-substituted spinel Li4Ti5O12 materials studied by multifrequency EPR spectroscopy, J. Mater. Chem. A, 1 (2013) 9973.

DOI: 10.1039/c3ta11590a

Google Scholar

[18] M. K. Zhu, L. Y. Liu, Y. D. Hou, H. Wang, H. Yan, Microstructure and electrical properties of MnO-doped (Na0. 5Bi0. 5)0. 92Ba0. 08TiO3 lead-free piezoceramics, J. Am. Ceram. Soc. 90(1) (2007) 120.

Google Scholar

[19] Y.C. Guo, H.Q. Fan, C.B. Long, J. Shi, S.H. Lei, Electromechanical and electrical properties of Bi0. 5Na0. 5Ti1-xMnxO3-d ceramics with high remnant polarization, J. Alloys compd. 610 (2014) 189-195.

DOI: 10.1016/j.jallcom.2014.04.038

Google Scholar

[20] Q. Chen, Z.H. Peng, H. Liu, D.Q. Xiao, J.L. Zhu, J.G. Zhu, The crystalline structure and phase-transitional behavior of (Li0. 12Na0. 88)(Nb1-xSbx)O3 lead-free piezoelectric ceramics with high Qm, J. Am. Ceram. Soc. 93(9)(2010) 2788-2794.

DOI: 10.1111/j.1551-2916.2010.03813.x

Google Scholar

[21] I. Burn, Mn-doped polycrastalline BaTiO3, J. Mater. Sci. 14(10) (1979) 2453-2458.

DOI: 10.1007/bf00737036

Google Scholar