Investigating the pH Dependence of Ultraviolet Radiation Induced Synthesis of TiO2/Poly(Acrylic Acid) Nanocomposites

Article Preview

Abstract:

In this work, Poly(Acrylic Acid) (PAA) was employed as nanoparticle stabilizer for TiO2. Adsorption and encapsulation of nanoparticles in polyelectrolytes impart stability due to stearic and electrostatic effects. Crosslinking of the polymer through UV-Irradiation permanently encapsulates the metal as well as reinforces the polymer cage. The efficient pH and ratio of reactants were optimized then assessed through Dynamic Light Scattering (DLS) for particle size and Zeta Potential Measurements for stability in aqueous solutions. Results showed that among the various TiO2/PAA ratios, the 1:3 ratio showed minimal changes on the size and Zeta Potential values even when exposed to various pH conditions. Meanwhile at pH 5, TiO2 attained a positive surface charge, while PAA exists in its deprotonated form, thus maximizing the electrostatic interaction between the two materials. Analysis revealed that in that particular ratio and pH range, particles size and zeta-potential value of 61.79 nm and -36 mV were obtained respectively. Physical morphology of the nanocomposites was characterized through Scanning Electron Microscopy, showing agglomerates of small particles, resulting to larger particles. Further studies shall be done to utilize the potential of the polymer-coated nanoparticles in dry form.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-83

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Caseri, Nanocomposites of polymers and metals or semiconductors: historical background and optical properties, Macromol. Rapid Commun. 21 (2000) 705-722.

DOI: 10.1002/1521-3927(20000701)21:11<705::aid-marc705>3.0.co;2-3

Google Scholar

[2] J. Yue, V. Sankaran, R. E. Cohen, R. R. Schrock, Interconversion of ZnF2 and ZnS nanoclusters within spherical microdomains in block copolymer films, J. Am. Chem. Soc. 115 (1993) 4409-4444.

DOI: 10.1021/ja00063a088

Google Scholar

[3] J. Belloni, M. Mostafavi, H. Remita, J. L. Marignier, M. O. Delcourt, Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids, New J. Chem. 22 (1998) 1239-1255.

DOI: 10.1039/a801445k

Google Scholar

[4] A. R. Khokhlov, On the collapse of weakly charged polyelectrolytes, J. Phys. A: Math. Gen. 13 (1980) 979-987.

DOI: 10.1088/0305-4470/13/3/030

Google Scholar

[5] K. Malick, M. J. Witcomb, M. S. Scurrell, Polymer stabilized silver nanoparticles: a photochemical synthesis route, J. Mater. Sci. I. 39 (2004) 4459-4463.

DOI: 10.1023/b:jmsc.0000034138.80116.50

Google Scholar

[6] L. J. P. Trinidad, K. A. S. Usman, L. M. Jr. Payawan, γ-Irradiation Induced Synthesis of Titanium Dioxide/Poly (acrylic acid)(TiO2/PAA) Nanocomposites and Layer-by-Layer Assembly on Glass Substrate, Adv. Mater. Res. 1098 (2015).

DOI: 10.4028/www.scientific.net/amr.1098.25

Google Scholar

[7] M. Keshmiri, T. Troczynski, Synthesis of narrow size distribution sub-micron TiO2 spheres, J. Non-Crystalline Solids, 311 (2002) 89-92.

DOI: 10.1016/s0022-3093(02)01607-1

Google Scholar

[8] S. Liufu, H. Xiao, Y. Li, Adsorption of poly (acrylic acid) onto the surface of titanium dioxide and the colloidal stability of aqueous suspension, J. Coll. Interf. Sci. 281 (2005) 155-163.

DOI: 10.1016/j.jcis.2004.08.075

Google Scholar

[9] R. A. McAloney, M. Sinyor, V. Dudnik, M. C. Goh, Atomic force microscopy studies of salt effects on polyelectrolyte multilayer film morphology, Langmuir, 17 (2001) 6655-6663.

DOI: 10.1021/la010136q

Google Scholar

[10] S. Chibowski, M. Wisniewska, A. W. Marczewski, S. Pikus, Application of the SAXS method and viscometry for determination of the thickness of adsorbed polymer layers at the ZrO 2–polymer solution interface, J. Coll. Interf. Sci. 267 (2003) 1-8.

DOI: 10.1016/s0021-9797(03)00698-2

Google Scholar

[11] R. Silveyra, L. De La Torre Saenz, W. A. Flores, V. C. Martinez, A. A. Elguezabal, Doping of TiO 2 with nitrogen to modify the interval of photocatalytic activation towards visible radiation, Catal. Today, 107-108 (2005) 602-605.

DOI: 10.1016/j.cattod.2005.07.023

Google Scholar

[12] A. Foissy, A. El Attar, J. M. Lamarche, Adsorption of polyacrylic acid on titanium dioxide, J. Coll. Interf. Sci. 96(1) (1983) 275-287.

DOI: 10.1016/0021-9797(83)90029-2

Google Scholar

[13] K. A. S. Usman, L. J. P. Trinidad, L. M. Jr. Payawan, UV-Irradiation Induced Synthesis of Fluorescent Poly (Acrylic Acid) Stabilized Silver Clusters, MATEC Web of Conferences, Vol. 27. EDP Sciences, (2015).

DOI: 10.1051/matecconf/20152701007

Google Scholar

[14] M. T. C. Sansiviero, D. S. dos Santos, A. D. Job, R. F. Aroca, Layer by layer TiO 2 thin films and photodegradation of Congo red, J. Photochem. Photobiol. A: Chem. 220 (2011) 20-24.

DOI: 10.1016/j.jphotochem.2011.03.007

Google Scholar

[15] H. G. Pedersen, L. Bergström, Forces measured between zirconia surfaces in poly (acrylic acid) solutions, J. Am. Ceram. Soc. 82 (1999) 1137-1145.

DOI: 10.1111/j.1151-2916.1999.tb01887.x

Google Scholar