Thermal Elastic Constitutive Equation of Orthotropic Materials

Article Preview

Abstract:

In the finite deformation range, the numbers of orthotropic 2n order elastic constants are studied on the basis of tensor function and of its representation theorem. On the basis of elastic constant research, the elastic orthotropic constitutive equation is derived by using the tensor method. Based on orthotropic elastic constitutive equations an in-depth study on the constitutive theory of orthotropic nonlinear thermal elasticity is carried out, and by considering the deformation produced by the coupling of temperature and load, nonlinear orthotropic thermoelastic constitutive equation is further derived with representation of the tensor invariant and scalar invariant. The constitutive equations could be used very convenient to the application in reality.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-101

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Tourchi, A. Hamidi, Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts, J. Rock Mech. Geotech. Eng. 7(2) (2015) 193-198.

DOI: 10.1016/j.jrmge.2015.02.004

Google Scholar

[2] J. Mehdi, Z. N. Mohammad, G. Mehdi, Thermo-elastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness undermechanical loading, Int. J. Eng. Sci. 96 (2015) 1-18.

DOI: 10.1016/j.ijengsci.2015.07.005

Google Scholar

[3] S. Stefan, Z. Marco, C. A. Jan, S. Paul, Thermo-elastic deformations of the workpiece when dry turning aluminum alloys - A finite element model to predict thermal effects in the workpiece, CIRP J. Manuf. Sci. Technol. 7(3) (2014) 233-245.

DOI: 10.1016/j.cirpj.2014.04.006

Google Scholar

[4] J. W. Kim, S. Y. Im, H. G. Kim, Numerical implementation of athermo-elastic–plastic constitutive equation in consideration of transformationplasticity in welding, Int. J. Plastic. 21(7) (2015) 1383-1408.

DOI: 10.1016/j.ijplas.2004.06.007

Google Scholar

[5] A. R. Safari, M. R. Forouzan, M. Shamanian, Thermo-viscoplastic constitutive equation of austenitic stainless steel 310s, Comput. Mater. Sci. 68 (2013) 402-407.

DOI: 10.1016/j.commatsci.2012.10.039

Google Scholar

[6] Z. George, Voyiadjisa, F. Danial, Microstructure to Macro-Scale Using Gradient Plasticity with Temperature and Rate Dependent Length Scale, Procedia IUTAM. 3 (2012) 205-227.

DOI: 10.1016/j.piutam.2012.03.014

Google Scholar

[7] L. Anand, O. Aslan, S. A. Chester, A large-deformation gradient theory for elastic–plastic materials: Strain softening and regularization of shear bands, Int. J. Plastic. 30-31 (2012) 116-143.

DOI: 10.1016/j.ijplas.2011.10.002

Google Scholar

[8] A. Goel, M. Sherafati, A. Negahban, Azizinamini, Y. Wang, A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66, Int. J. Plastic. 67 (2015).

DOI: 10.1016/j.ijplas.2014.10.004

Google Scholar

[9] A. Maurel-Pantel, E. Baquet, J. Bikard, J. L. Bouvard, N. Billon, A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66, Int. J. Plastic. 67 (2015).

DOI: 10.1016/j.ijplas.2014.10.004

Google Scholar

[10] J. L. Chaboche, G. Cailletaudb, Integration methods for complex plastic constitutive equations, Comput. Methods Appl. Mech. Eng. 133(1-2) (1996) 125-155.

DOI: 10.1016/0045-7825(95)00957-4

Google Scholar

[11] X. Tian, Y. Zhang, Mathematical description for flow curves of some stable austenitic steels, Mater. Sci. Eng. A. 174(1) (1994) L1–L3.

DOI: 10.1016/0921-5093(94)91120-7

Google Scholar

[12] C. Li, Hyperelastic Material Nonlinear Constitutive Theory, National Def. Ind. Pre, Beijing, (2012).

Google Scholar

[13] C. Li, G. T. Yang, Z. Z. Huang, On Constitutive Equations of Isotropic Non-linear Elastic Medium, Eng. Mech. 27 (2010) 1-5.

Google Scholar

[14] C. Li, G. T. Yang, Z. Z. Huang, Nonlinear Constitutive Equations and Potential Function of Transversely Isotropy Elastic Materials, Chin. Quarterly Mech. 30 (2009) 517-522.

Google Scholar

[15] C. Li, G. T. Yang, Nonlinear Constitutive Equations and Potential Function of Orthogonal Aeolotropy Elastic Materials, Chin. Quarterly Mech. 30 (2009) 169-175.

Google Scholar

[16] W. Yang, W. B. Lee, Mesoplasticity and Its Applications, Springer-Verlag, Berlin, (1993).

Google Scholar

[17] Q. H. Tang, Z. P. Duan, Plastic meso mechanics, Science Press, Beijing, (1995).

Google Scholar

[18] S. H. Chen, Q. H. Tang, Micro-scale Plasticity Mechanics, University of Science & Technology China press, Hefei, (2009).

Google Scholar

[19] G. I. Taylor, Plastic strain in metals, J. Inst. Met. 62 (1938) 307-324.

Google Scholar

[20] R. Hill, Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids. 13(2) (1965) 89-101.

DOI: 10.1016/0022-5096(65)90023-2

Google Scholar

[21] F. Roters, P. Eisenlohr, L. Hantcherli, et al, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Materialia. 58(4) (2010).

DOI: 10.1016/j.actamat.2009.10.058

Google Scholar

[22] Q. W. Wang, X. G. Yang, H. Y. QI, D. Q. Shi, Crystal lographic Constitutive Models for Single Crystal Nickel Base Superalloys, Failire Anal. Prevent. 3 (2008) 28-34.

Google Scholar

[23] L. Anand, O. Aslan, S. A. Chester, A large-deformation gradient theory for elastic–plastic materials: Strain softening and regularization of shear bands, Int. J. Plastic. 30-31 (2012) 116-143.

DOI: 10.1016/j.ijplas.2011.10.002

Google Scholar

[24] Z. George, Voyiadjisa, F. Danial, Microstructure to Macro-Scale Using Gradient Plasticity with Temperature and Rate Dependent Length Scale, Procedia IUTAM. 3 (2012) 205-227.

DOI: 10.1016/j.piutam.2012.03.014

Google Scholar

[25] C. Chen, Q. H. Tang, T. C. Wang, A new thermo-elasto-plasticity constitutive theory for polycrystalline metals, Acta Mechanica Sinica. 31(3) (2015) 338-348.

DOI: 10.1007/s10409-015-0462-1

Google Scholar

[26] A. Goel, M. Sherafati, A. Negahban, A. Azizinamini, Y. N. Wang, A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66, Int. J. Plastic. 67 (2015).

DOI: 10.1016/j.ijplas.2014.10.004

Google Scholar

[27] Z. Li, L. Chen, Thermal Stress Constitutive Equations of Non-Linear Isotropic Elastic Material, Appl. Math. Mech. 34 (2013) 183-189.

Google Scholar

[28] Z. X. Wang, X. F. Liu, J. X Xie, Constitutive Relationship of Hot Deformation of AZ91 Magnesium Alloy, Acta Metallurgica Sinica. 44(11) (2008) 1378-1383.

Google Scholar

[29] Y. Liu, Y. Tao, J. Jia, Characteristics of Flow Curves and Constitutive Equation of Nickel-Based P /M Superalloy FGH98, J. Aeronautic. Mater. 31(6) (2011) 12-18.

Google Scholar

[30] W. G. Zhao, X. Li, S. Q. Lu, etc, Study on constitutive relationship of TC11 titanium alloy during high temperature deformation, J. Plastic. Eng. 15 (2008) 123-127.

Google Scholar

[31] M. O. Alniak, F. Bedir, Change in graid size and flow strength in P/M Rene 95 under isothermal forging conditions, Mater. Sci. Eng. (B). 130(1-3) (2006) 254-263.

DOI: 10.1016/j.mseb.2006.03.011

Google Scholar

[32] A. Thomasa, M. El-Wahabi, J. M. Cabrera, J. M. Prado, High temperature deformation of Inconel 718, J. Mater. Process. Technol. 177(1-3) (2006) 469-472.

DOI: 10.1016/j.jmatprotec.2006.04.072

Google Scholar

[33] J. Lubliner, F. Auricchio, Generalized plasticity and shape-memory alloys, Int. J. Solids Struct. 33(7) (1996) 991-1003.

DOI: 10.1016/0020-7683(95)00082-8

Google Scholar

[34] G. T. Houlsby, A. M. Puzrin, A thermomechanical frame work for constitutive models for rate-independent dissipative materials, Int. J. Plastic. 16(9) (2000) 1017-1047.

DOI: 10.1016/s0749-6419(99)00073-x

Google Scholar

[35] X. X. Zhang, B. Z. Zhou, Elastic constitutive relation analysis of orthotropic materials, Aeroengine. 1 (1997) 20-25.

Google Scholar

[36] C. Li, G. T. Yang, Nonlinear constitutive equation and potential function of orthogonal aeolotropy elastic materials, Chin. Quarterly Mech. 30 (2009) 169-175.

Google Scholar

[37] Y. X. Han, 3-D elasto-plastic analysis of orthogonal anisotropic materials, ACTA Aeronautica ET Astronautica Sinica. 7(3) (1986) 225-233.

Google Scholar

[38] C. C. Wang, A new representation theorem for isotropic functions, Part I and II, Archive for Rational Mech. Anal. 36 (1970) 166-223.

DOI: 10.1007/bf00272241

Google Scholar

[39] F. Roters, P. Eisenlohr, L. Hantcherli, et al., Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Materialia, 58(4) (2010).

DOI: 10.1016/j.actamat.2009.10.058

Google Scholar

[40] Q. S. Zheng, Theory of representations for tensor functions: a unified invariant approach to constitutive equations, Appl. Mech. Rev. 26 (1996) 114-137.

Google Scholar

[41] Z. H. Guo, Tensor (Theroy and Application), Science Press, Beijing, (1988).

Google Scholar

[42] D. J. Macon, R. J. Farris, A New Analytical and Experimental Approach To Rubber Thermodynamics, Macromolecules. 32(15) (1999) 5004-5016.

DOI: 10.1021/ma9806763

Google Scholar