[1]
S. Tourchi, A. Hamidi, Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts, J. Rock Mech. Geotech. Eng. 7(2) (2015) 193-198.
DOI: 10.1016/j.jrmge.2015.02.004
Google Scholar
[2]
J. Mehdi, Z. N. Mohammad, G. Mehdi, Thermo-elastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness undermechanical loading, Int. J. Eng. Sci. 96 (2015) 1-18.
DOI: 10.1016/j.ijengsci.2015.07.005
Google Scholar
[3]
S. Stefan, Z. Marco, C. A. Jan, S. Paul, Thermo-elastic deformations of the workpiece when dry turning aluminum alloys - A finite element model to predict thermal effects in the workpiece, CIRP J. Manuf. Sci. Technol. 7(3) (2014) 233-245.
DOI: 10.1016/j.cirpj.2014.04.006
Google Scholar
[4]
J. W. Kim, S. Y. Im, H. G. Kim, Numerical implementation of athermo-elastic–plastic constitutive equation in consideration of transformationplasticity in welding, Int. J. Plastic. 21(7) (2015) 1383-1408.
DOI: 10.1016/j.ijplas.2004.06.007
Google Scholar
[5]
A. R. Safari, M. R. Forouzan, M. Shamanian, Thermo-viscoplastic constitutive equation of austenitic stainless steel 310s, Comput. Mater. Sci. 68 (2013) 402-407.
DOI: 10.1016/j.commatsci.2012.10.039
Google Scholar
[6]
Z. George, Voyiadjisa, F. Danial, Microstructure to Macro-Scale Using Gradient Plasticity with Temperature and Rate Dependent Length Scale, Procedia IUTAM. 3 (2012) 205-227.
DOI: 10.1016/j.piutam.2012.03.014
Google Scholar
[7]
L. Anand, O. Aslan, S. A. Chester, A large-deformation gradient theory for elastic–plastic materials: Strain softening and regularization of shear bands, Int. J. Plastic. 30-31 (2012) 116-143.
DOI: 10.1016/j.ijplas.2011.10.002
Google Scholar
[8]
A. Goel, M. Sherafati, A. Negahban, Azizinamini, Y. Wang, A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66, Int. J. Plastic. 67 (2015).
DOI: 10.1016/j.ijplas.2014.10.004
Google Scholar
[9]
A. Maurel-Pantel, E. Baquet, J. Bikard, J. L. Bouvard, N. Billon, A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66, Int. J. Plastic. 67 (2015).
DOI: 10.1016/j.ijplas.2014.10.004
Google Scholar
[10]
J. L. Chaboche, G. Cailletaudb, Integration methods for complex plastic constitutive equations, Comput. Methods Appl. Mech. Eng. 133(1-2) (1996) 125-155.
DOI: 10.1016/0045-7825(95)00957-4
Google Scholar
[11]
X. Tian, Y. Zhang, Mathematical description for flow curves of some stable austenitic steels, Mater. Sci. Eng. A. 174(1) (1994) L1–L3.
DOI: 10.1016/0921-5093(94)91120-7
Google Scholar
[12]
C. Li, Hyperelastic Material Nonlinear Constitutive Theory, National Def. Ind. Pre, Beijing, (2012).
Google Scholar
[13]
C. Li, G. T. Yang, Z. Z. Huang, On Constitutive Equations of Isotropic Non-linear Elastic Medium, Eng. Mech. 27 (2010) 1-5.
Google Scholar
[14]
C. Li, G. T. Yang, Z. Z. Huang, Nonlinear Constitutive Equations and Potential Function of Transversely Isotropy Elastic Materials, Chin. Quarterly Mech. 30 (2009) 517-522.
Google Scholar
[15]
C. Li, G. T. Yang, Nonlinear Constitutive Equations and Potential Function of Orthogonal Aeolotropy Elastic Materials, Chin. Quarterly Mech. 30 (2009) 169-175.
Google Scholar
[16]
W. Yang, W. B. Lee, Mesoplasticity and Its Applications, Springer-Verlag, Berlin, (1993).
Google Scholar
[17]
Q. H. Tang, Z. P. Duan, Plastic meso mechanics, Science Press, Beijing, (1995).
Google Scholar
[18]
S. H. Chen, Q. H. Tang, Micro-scale Plasticity Mechanics, University of Science & Technology China press, Hefei, (2009).
Google Scholar
[19]
G. I. Taylor, Plastic strain in metals, J. Inst. Met. 62 (1938) 307-324.
Google Scholar
[20]
R. Hill, Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids. 13(2) (1965) 89-101.
DOI: 10.1016/0022-5096(65)90023-2
Google Scholar
[21]
F. Roters, P. Eisenlohr, L. Hantcherli, et al, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Materialia. 58(4) (2010).
DOI: 10.1016/j.actamat.2009.10.058
Google Scholar
[22]
Q. W. Wang, X. G. Yang, H. Y. QI, D. Q. Shi, Crystal lographic Constitutive Models for Single Crystal Nickel Base Superalloys, Failire Anal. Prevent. 3 (2008) 28-34.
Google Scholar
[23]
L. Anand, O. Aslan, S. A. Chester, A large-deformation gradient theory for elastic–plastic materials: Strain softening and regularization of shear bands, Int. J. Plastic. 30-31 (2012) 116-143.
DOI: 10.1016/j.ijplas.2011.10.002
Google Scholar
[24]
Z. George, Voyiadjisa, F. Danial, Microstructure to Macro-Scale Using Gradient Plasticity with Temperature and Rate Dependent Length Scale, Procedia IUTAM. 3 (2012) 205-227.
DOI: 10.1016/j.piutam.2012.03.014
Google Scholar
[25]
C. Chen, Q. H. Tang, T. C. Wang, A new thermo-elasto-plasticity constitutive theory for polycrystalline metals, Acta Mechanica Sinica. 31(3) (2015) 338-348.
DOI: 10.1007/s10409-015-0462-1
Google Scholar
[26]
A. Goel, M. Sherafati, A. Negahban, A. Azizinamini, Y. N. Wang, A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66, Int. J. Plastic. 67 (2015).
DOI: 10.1016/j.ijplas.2014.10.004
Google Scholar
[27]
Z. Li, L. Chen, Thermal Stress Constitutive Equations of Non-Linear Isotropic Elastic Material, Appl. Math. Mech. 34 (2013) 183-189.
Google Scholar
[28]
Z. X. Wang, X. F. Liu, J. X Xie, Constitutive Relationship of Hot Deformation of AZ91 Magnesium Alloy, Acta Metallurgica Sinica. 44(11) (2008) 1378-1383.
Google Scholar
[29]
Y. Liu, Y. Tao, J. Jia, Characteristics of Flow Curves and Constitutive Equation of Nickel-Based P /M Superalloy FGH98, J. Aeronautic. Mater. 31(6) (2011) 12-18.
Google Scholar
[30]
W. G. Zhao, X. Li, S. Q. Lu, etc, Study on constitutive relationship of TC11 titanium alloy during high temperature deformation, J. Plastic. Eng. 15 (2008) 123-127.
Google Scholar
[31]
M. O. Alniak, F. Bedir, Change in graid size and flow strength in P/M Rene 95 under isothermal forging conditions, Mater. Sci. Eng. (B). 130(1-3) (2006) 254-263.
DOI: 10.1016/j.mseb.2006.03.011
Google Scholar
[32]
A. Thomasa, M. El-Wahabi, J. M. Cabrera, J. M. Prado, High temperature deformation of Inconel 718, J. Mater. Process. Technol. 177(1-3) (2006) 469-472.
DOI: 10.1016/j.jmatprotec.2006.04.072
Google Scholar
[33]
J. Lubliner, F. Auricchio, Generalized plasticity and shape-memory alloys, Int. J. Solids Struct. 33(7) (1996) 991-1003.
DOI: 10.1016/0020-7683(95)00082-8
Google Scholar
[34]
G. T. Houlsby, A. M. Puzrin, A thermomechanical frame work for constitutive models for rate-independent dissipative materials, Int. J. Plastic. 16(9) (2000) 1017-1047.
DOI: 10.1016/s0749-6419(99)00073-x
Google Scholar
[35]
X. X. Zhang, B. Z. Zhou, Elastic constitutive relation analysis of orthotropic materials, Aeroengine. 1 (1997) 20-25.
Google Scholar
[36]
C. Li, G. T. Yang, Nonlinear constitutive equation and potential function of orthogonal aeolotropy elastic materials, Chin. Quarterly Mech. 30 (2009) 169-175.
Google Scholar
[37]
Y. X. Han, 3-D elasto-plastic analysis of orthogonal anisotropic materials, ACTA Aeronautica ET Astronautica Sinica. 7(3) (1986) 225-233.
Google Scholar
[38]
C. C. Wang, A new representation theorem for isotropic functions, Part I and II, Archive for Rational Mech. Anal. 36 (1970) 166-223.
DOI: 10.1007/bf00272241
Google Scholar
[39]
F. Roters, P. Eisenlohr, L. Hantcherli, et al., Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Materialia, 58(4) (2010).
DOI: 10.1016/j.actamat.2009.10.058
Google Scholar
[40]
Q. S. Zheng, Theory of representations for tensor functions: a unified invariant approach to constitutive equations, Appl. Mech. Rev. 26 (1996) 114-137.
Google Scholar
[41]
Z. H. Guo, Tensor (Theroy and Application), Science Press, Beijing, (1988).
Google Scholar
[42]
D. J. Macon, R. J. Farris, A New Analytical and Experimental Approach To Rubber Thermodynamics, Macromolecules. 32(15) (1999) 5004-5016.
DOI: 10.1021/ma9806763
Google Scholar