Modelling the Brittle/Ductile Transition in Super-Fine Finishing of Carbides

Article Preview

Abstract:

Materials such as binderless tungsten carbide and silicon carbide have become ubiquitous in the fabrication of high-performance tooling and molding inserts. But while conventional grinding of these hard ceramics has been studied in depth, the theory underlying their super-fine finishing has been less extensively explored. In particular, the boundary in process parameters that delineates the brittle/ductile removal transition remains mostly undocumented. In this paper, we review some super-fine finishing methods for carbide materials, based on both bound and kinetic abrasive processes. The focus is then placed on modelling the interaction between material and abrasives under their respective process conditions, and deriving some useful criteria guiding the brittle/ductile transition.

You have full access to the following eBook

Info:

Periodical:

Pages:

20-28

Citation:

Online since:

August 2017

Export:

Share:

Citation:

* - Corresponding Author

[1] Evans C., Paul E., Dornfeld D., Lucca D., Byrne G., Tricard M., Klocke F., Dambon O., Material removal mechanisms in lapping and polishing, Annals of the CIRP, 52/2 (2003) 611-633.

DOI: 10.1016/s0007-8506(07)60207-8

Google Scholar

[2] Yu G., Walker D., Li H., Implementing a grolishing process in Zeeko IRP machines, Applied optics, 51/27 (2012) 6637-6640.

DOI: 10.1364/ao.51.006637

Google Scholar

[3] Beaucamp A., Namba Y., Combrinck H., Charlton P., Freeman R., Shape adaptive grinding of CVD silicon carbide, Annals of the CIRP, 63/1 (2014) 317-320.

DOI: 10.1016/j.cirp.2014.03.019

Google Scholar

[4] Walker D., Beaucamp A., Freeman R., McCavana G., Morton R., Use of the Precessions process for pre-polishing and correcting 2D & 2. 5D Form, Optics Express, 14/24 (2006) 11787-11795.

DOI: 10.1364/oe.14.011787

Google Scholar

[5] Messelink W., Faehnle O., Exploiting the Process Stability of Fluid Jet Polishing, Optical Fabrication and Testing, OSA Technical Digest (2008) OThD3.

DOI: 10.1364/oft.2008.othd3

Google Scholar

[6] Riveros R., Mitsuishi I., Takagi U., Ezoe Y., Mitsuda K., Yamaguchi H., Boggs T., Ishizu K., Magnetic Field-Assisted Finishing of Silicon Microelectromechanical Systems Micropore X-Ray Optics, Journal of Manufacturing Science and Engineering, 134/5 (2012).

DOI: 10.1115/1.4006967

Google Scholar

[7] Mori Y., Yamauchi K., Endo K., Elastic emission machining, Precision Engineering 9/3 (1987) 123-128.

DOI: 10.1016/0141-6359(87)90029-8

Google Scholar

[8] Suzuki H., Moriwaki T., Okino T., 2006, Development of ultrasonic vibration assisted polishing machine for micro aspheric die and mold, Annals of the CIRP, 55/1: 385-388.

DOI: 10.1016/s0007-8506(07)60441-7

Google Scholar

[9] Mori Y., Yamauchi K., Yamamura K., Sano Y., Development of plasma chemical vaporization machining, Rev. of Scientific Instruments, 71/12 (2000) 4627-4632.

DOI: 10.1063/1.1322581

Google Scholar

[10] Drueding T., Fawcett S., Wilson S., Bifano T., Ion beam figuring of small optical components, Optical engineering, 34/12 (1995) 3565-3571.

DOI: 10.1117/12.215648

Google Scholar

[11] Klocke F. and König W., Manufacturing Processes 2 (2009).

Google Scholar

[12] Malkin S. and Ritter J., Grinding mechanisms and strength degradation for ceramics. Journal of Engineering for Industry 111/2 (1989) 167-174.

DOI: 10.1115/1.3188746

Google Scholar

[13] D. Magda, Understanding the Effect of Residual Stresses on Surface Integrity and how to Measure them by a Non-Destructive Method. ASEE (2008) 13. 1313. 1-17.

DOI: 10.18260/1-2--3560

Google Scholar

[14] T. Bifano, T. Dow, R. Scattergood, Ductile-regime grinding: a new technology for machining brittle materials. Transactions of ASME 113 (1991) 184-189.

DOI: 10.1115/1.2899676

Google Scholar

[15] H. Kim, J. Kim, Y. Kwon, Mechanical properties of binderless tungsten carbide by spark plasma sintering. Proc. 9th Russian-Korean International Symposium on Science and Technology (2005) 458-461.

DOI: 10.1109/korus.2005.1507757

Google Scholar

[16] A. Beaucamp, Y. Namba, H. Combrinck, P. Charlton, R. Freeman, Shape adaptive grinding of CVD silicon carbide. Annals of the CIRP 63/1 (2014) 317-320.

DOI: 10.1016/j.cirp.2014.03.019

Google Scholar

[17] A. Beaucamp, Y. Namba, P. Charlton, Process mechanism in shape adaptive grinding (SAG). Annals of the CIRP 64/1 (2015) 305-308.

DOI: 10.1016/j.cirp.2015.04.096

Google Scholar

[18] A. Beaucamp, P. Simon, P. Charlton, C. King, A. Matsubara, K. Wegener, Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics. International Journal of Machine Tools and Manufacture (2016).

DOI: 10.1016/j.ijmachtools.2016.11.006

Google Scholar

[19] A. Beaucamp, Y. Namba, R. Freeman, Dynamic Multiphase Modeling and Optimization of Fluid Jet Polishing Process. Annals of the CIRP 61/1 (2012) 315-318.

DOI: 10.1016/j.cirp.2012.03.073

Google Scholar

[20] A. Beaucamp, Y. Namba, W. Messelink, D. Walker, P. Charlton, R. Freeman, Surface integrity of fluid jet polished tungsten carbide. Procedia CIRP 13 (2014) 377-381.

DOI: 10.1016/j.procir.2014.04.064

Google Scholar