Viscous Fingering: A Topological Visual Analytic Approach

Article Preview

Abstract:

We present a methodology to analyze and visualize an ensemble of finite pointset method (FPM) simulations that model the viscous fingering process of salt solutions inside water. In course of the simulations the solutions form structures with increased salt concentration value, called viscous fingers. These structures are of primary interest to domain scientists since it is not deterministic when and where viscous fingers appear and how they evolve. To explore the aleatoric uncertainty embedded in the simulations we analyze an ensemble of simulation runs which differ due to stochastic effects. To detect and track the viscous fingers we derive a voxel volume for each simulation where fingers are identified as subvolumes that satisfy geometrical and topological constraints. Properties and the evolution of fingers are illustrated through tracking graphs that visualize when fingers form, dissolve, merge, and split. We provide multiple linked views to compare, browse, and analyze the ensemble in real-time.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] J. P. Ahrens, S. Jourdain, P. O'Leary, J. Patchett, D. H. Rogers, and M. Petersen. An image-based approach to extreme scale in situ visualization and analysis. SuperComputing 2014, pages 424- 434, (2014).

DOI: 10.1109/sc.2014.40

Google Scholar

[2] G. Aldrich, J. Lukasczyk, M. Steptoe, R. Maciejewski, H. Leitte, and B. Hamann. Viscous fingers: A topological visual analytics approach. IEEE Scientific Visualization Contest, (2016).

DOI: 10.4028/www.scientific.net/amm.869.9

Google Scholar

[3] J. Bennett, V. Krishnamoorthy, S. Liu, R. W. Grout, E. R. Hawkes, J. H. Chen, J. Shepherd, V. Pascucci, and P. -T. Bremer. Feature-based statistical analysis of combustion simulation data. IEEE Trans. Vis. Comput. Graph., 17(12): 1822-1831, (2011).

DOI: 10.1109/tvcg.2011.199

Google Scholar

[4] P. -T. Bremer, E. M. Bringa, M. A. Duchaineau, A. G. Gyulassy, D. Laney, A. Mascarenhas, and V. Pascucci. Topological feature extraction and tracking. Journal of Physics: Conference Series, 78(1), (2007).

DOI: 10.1088/1742-6596/78/1/012007

Google Scholar

[5] P. T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell. Interactive exploration and analysis of large-scale simulations using topology-based data segmentation. IEEE Transactions on Visualization and Computer Graphics, 17(9): 1307-1324, (2011).

DOI: 10.1109/tvcg.2010.253

Google Scholar

[6] A. De Wit, Y. Bertho, and M. Martin. Viscous fingering of miscible slices. Physics of fluids, 17(5): 054114, (2005).

DOI: 10.1063/1.1909188

Google Scholar

[7] G. Favelier, C. Gueunet, and J. Tierny. Visualizing ensembles of viscous fingers. IEEE Scientific Visualization Contest, (2016).

Google Scholar

[8] J. Feder. Viscous fingering in porous media. In Fractals, pages 41-61. Springer, (1988).

DOI: 10.1007/978-1-4899-2124-6_4

Google Scholar

[9] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani, G. Scheuermann, H. Hagen, and C. Garth. A survey of topology-based methods in visualization. Computer Graphics Forum, 35(3): 643-667, (2016).

DOI: 10.1111/cgf.12933

Google Scholar

[10] IEEEVIS. Scientific visualization contest. http: /www. uni-kl. de/sciviscontest/, (2016).

Google Scholar

[11] D. Laney, P. T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci. Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Transactions on Visualization and Computer Graphics, 12(5): 1053-1060, (2006).

DOI: 10.1109/tvcg.2006.186

Google Scholar

[12] J. Lukasczyk, R. Maciejewski, C. Garth, and H. Hagen. Understanding Hotspots: A Topological Visual Analytics Approach. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS '15, pages 36: 1-36: 10. ACM, (2015).

DOI: 10.1145/2820783.2820817

Google Scholar

[13] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM National Conference, ACM '68, pages 517-524, New York, NY, USA, 1968. ACM.

DOI: 10.1145/800186.810616

Google Scholar

[14] D. Silver and X. Wang. Tracking scalar features in unstructured data sets. In Visualization '98. Proceedings, pages 79-86, (1998).

DOI: 10.1109/visual.1998.745288

Google Scholar

[15] B. S. Sohn and C. Bajaj. Time-varying contour topology. IEEE Transactions on Visualization and Computer Graphics, 12(1): 14-25, (2006).

DOI: 10.1109/tvcg.2006.16

Google Scholar

[16] W. Widanagamaachchi, C. Christensen, V. Pascucci, and P. T. Bremer. Interactive exploration of large-scale time-varying data using dynamic tracking graphs. In IEEE Symposium on Large Data Analysis and Visualization (LDAV), pages 9-17, (2012).

DOI: 10.1109/ldav.2012.6378962

Google Scholar