[1]
A. Myronenko, X. Song, Point-set registration: coherent point drift, IEEE Trans, on Pattern Analysis and Machine Intelligence, 32. 12 (2010) 2262-2275.
DOI: 10.1109/tpami.2010.46
Google Scholar
[2]
A. Sotiras, Christos Davatzikos, Nikos Paragios, Deformable medical image registration: A survey, IEEE Transactions on Medical Imaging, 32. 7 (2013) 1153-1190.
DOI: 10.1109/tmi.2013.2265603
Google Scholar
[3]
P. V. Lukashevich, B. A. Zalesky, S. V. Ablameyko, Medical image registration based on SURF detector, Pattern Recognition and Image Analysis, 21. 3 (2011) 519-512.
DOI: 10.1134/s1054661811020696
Google Scholar
[4]
P.J. Besl N.D. McKay, A method for registration of 3-d shapes, IEEE Trans. Pattern Analysis and Machine Intelligence, 14 (1992) 239-256.
DOI: 10.1109/34.121791
Google Scholar
[5]
S. Rusinkiewicz and M. Levoy, Efficient variants of the ICP algorithm, in Proc. 3DIM, pp.145-152, (2001).
Google Scholar
[6]
N.J. Mitra, S. Floery, M. Ovsjanikov, N. Gelfand, L. Guibas, and H. Pottmann, Dynamic geometry registration, in Proc. Geometry Processing, pp.173-182, (2007).
Google Scholar
[7]
D. Simon, Fast Accurate Shape-Based Registration, PhD thesis, Robotics Inst, Carnegie Mellon Univ, Dec. (1996).
Google Scholar
[8]
N. Gelfand, N.J. Mitra, L. Guibas, H. Pottmann, Robust global registration, in Proc. Geometry Processing, (2005).
Google Scholar
[9]
M.F. Hansen, M.R. Blas, R. Larsen, Mahalanobis distance based iterative closest point, in Proc. SPIE, 6512 (2007) 65121Y.
DOI: 10.1117/12.708205
Google Scholar
[10]
A. Myronenko, X. Song, Point set registration: coherent point drift, IEEE Trans, Pattern Analysis and Machine Intelligence, 32. 12 (2010) 2262-2275.
DOI: 10.1109/tpami.2010.46
Google Scholar
[11]
C.M. Bishop, Neural Networks for Pattern Recognition, Oxford Univ. Press, (1995).
Google Scholar
[12]
L. Greengard J. Strain, The fast gauss transform, SIAM J. Scientific and Statistical Computing, 12. 1 (1991) 79-94.
DOI: 10.1137/0912004
Google Scholar
[13]
M. Griebel, D. Wissel, Fast approximation of the discrete gauss transform in higher dimensions, Journal of Scientific Computing, 55. 1 (2013) 149-172.
DOI: 10.1007/s10915-012-9626-3
Google Scholar
[14]
X. Gao, N. V. Navkar, D. J. Shah, N. V. Tsekos, Z. Deng, Intraoperative registration of preoperative 4D cardiac anatomy with real-time MR images, in Proc. 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering, (2012) 583-588.
DOI: 10.1109/bibe.2012.6399737
Google Scholar
[15]
S. Ji, X. Fan, K. D. Paulsen, D. W. Roberts, S. K. Mirza, S. S. Lollis, Patient Registration Using Intraoperative Stereovision in Image-guided Open Spinal Surgery, IEEE Transactions on Biomedical Engineering, 62. 9 (2015) 2177-2186.
DOI: 10.1109/tbme.2015.2415731
Google Scholar
[16]
J. Yang, S. Zhang, X. Zhuang, L. Jiang, L. Gu, Robust and efficient 3D registration via depth map-based feature point matching in image-guided neurosurgery, in Proc. 2014 IEEE 11th International Symposium on Biomedical Imaging, (2014) 758-761.
DOI: 10.1109/isbi.2014.6867981
Google Scholar
[17]
L. Xu, J. Liu, W. Zhan, L. Gu, A novel algorithm for CT-ultrasound registration, 2013 IEEE Point-of-Care Healthcare Technologies, (2013) 101-104.
DOI: 10.1109/pht.2013.6461294
Google Scholar
[18]
F. A. Reda, J. H. Noble, R. F. Labadie, B. M. Dawant, Automatic Pre- to Intra-Operative CT Registration for Image-Guided Cochlear Implant Surgery, IEEE Transactions on Biomedical Engineering, 59. 11 (2012) 3070-3077.
DOI: 10.1109/tbme.2012.2214775
Google Scholar
[19]
S. Reaungamornrat et al., MIND Demons: Symmetric Diffeomorphic Deformable Registration of MR and CT for Image-Guided Spine Surgery, IEEE Transactions on Medical Imaging, 35. 11 (2016) 2413-2424.
DOI: 10.1109/tmi.2016.2576360
Google Scholar