Surface Deformation Measurement Using Point Set Registration

Article Preview

Abstract:

Measurement of surface deformation is a key component for mapping intraoperative and preoperative image data in image-guided surgery. In this study, we segment CT-scanned images and then use a coherent point drift algorithm for the estimation of surface deformation. To extract surface points, the segmentation is based on the intensity of the image data. The registration of two point sets is considered as a probability density estimation problem in an expectation-maximization framework. Experimental results show that surface deformation between two point sets can be obtained based on the obtained geometric transformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

363-368

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Myronenko, X. Song, Point-set registration: coherent point drift, IEEE Trans, on Pattern Analysis and Machine Intelligence, 32. 12 (2010) 2262-2275.

DOI: 10.1109/tpami.2010.46

Google Scholar

[2] A. Sotiras, Christos Davatzikos, Nikos Paragios, Deformable medical image registration: A survey, IEEE Transactions on Medical Imaging, 32. 7 (2013) 1153-1190.

DOI: 10.1109/tmi.2013.2265603

Google Scholar

[3] P. V. Lukashevich, B. A. Zalesky, S. V. Ablameyko, Medical image registration based on SURF detector, Pattern Recognition and Image Analysis, 21. 3 (2011) 519-512.

DOI: 10.1134/s1054661811020696

Google Scholar

[4] P.J. Besl N.D. McKay, A method for registration of 3-d shapes, IEEE Trans. Pattern Analysis and Machine Intelligence, 14 (1992) 239-256.

DOI: 10.1109/34.121791

Google Scholar

[5] S. Rusinkiewicz and M. Levoy, Efficient variants of the ICP algorithm, in Proc. 3DIM, pp.145-152, (2001).

Google Scholar

[6] N.J. Mitra, S. Floery, M. Ovsjanikov, N. Gelfand, L. Guibas, and H. Pottmann, Dynamic geometry registration, in Proc. Geometry Processing, pp.173-182, (2007).

Google Scholar

[7] D. Simon, Fast Accurate Shape-Based Registration, PhD thesis, Robotics Inst, Carnegie Mellon Univ, Dec. (1996).

Google Scholar

[8] N. Gelfand, N.J. Mitra, L. Guibas, H. Pottmann, Robust global registration, in Proc. Geometry Processing, (2005).

Google Scholar

[9] M.F. Hansen, M.R. Blas, R. Larsen, Mahalanobis distance based iterative closest point, in Proc. SPIE, 6512 (2007) 65121Y.

DOI: 10.1117/12.708205

Google Scholar

[10] A. Myronenko, X. Song, Point set registration: coherent point drift, IEEE Trans, Pattern Analysis and Machine Intelligence, 32. 12 (2010) 2262-2275.

DOI: 10.1109/tpami.2010.46

Google Scholar

[11] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford Univ. Press, (1995).

Google Scholar

[12] L. Greengard J. Strain, The fast gauss transform, SIAM J. Scientific and Statistical Computing, 12. 1 (1991) 79-94.

DOI: 10.1137/0912004

Google Scholar

[13] M. Griebel, D. Wissel, Fast approximation of the discrete gauss transform in higher dimensions, Journal of Scientific Computing, 55. 1 (2013) 149-172.

DOI: 10.1007/s10915-012-9626-3

Google Scholar

[14] X. Gao, N. V. Navkar, D. J. Shah, N. V. Tsekos, Z. Deng, Intraoperative registration of preoperative 4D cardiac anatomy with real-time MR images, in Proc. 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering, (2012) 583-588.

DOI: 10.1109/bibe.2012.6399737

Google Scholar

[15] S. Ji, X. Fan, K. D. Paulsen, D. W. Roberts, S. K. Mirza, S. S. Lollis, Patient Registration Using Intraoperative Stereovision in Image-guided Open Spinal Surgery, IEEE Transactions on Biomedical Engineering, 62. 9 (2015) 2177-2186.

DOI: 10.1109/tbme.2015.2415731

Google Scholar

[16] J. Yang, S. Zhang, X. Zhuang, L. Jiang, L. Gu, Robust and efficient 3D registration via depth map-based feature point matching in image-guided neurosurgery, in Proc. 2014 IEEE 11th International Symposium on Biomedical Imaging, (2014) 758-761.

DOI: 10.1109/isbi.2014.6867981

Google Scholar

[17] L. Xu, J. Liu, W. Zhan, L. Gu, A novel algorithm for CT-ultrasound registration, 2013 IEEE Point-of-Care Healthcare Technologies, (2013) 101-104.

DOI: 10.1109/pht.2013.6461294

Google Scholar

[18] F. A. Reda, J. H. Noble, R. F. Labadie, B. M. Dawant, Automatic Pre- to Intra-Operative CT Registration for Image-Guided Cochlear Implant Surgery, IEEE Transactions on Biomedical Engineering, 59. 11 (2012) 3070-3077.

DOI: 10.1109/tbme.2012.2214775

Google Scholar

[19] S. Reaungamornrat et al., MIND Demons: Symmetric Diffeomorphic Deformable Registration of MR and CT for Image-Guided Spine Surgery, IEEE Transactions on Medical Imaging, 35. 11 (2016) 2413-2424.

DOI: 10.1109/tmi.2016.2576360

Google Scholar