Preparation of CNT Counter Electrode by Electrophoresis for Dye-Sensitized Solar Cell

Article Preview

Abstract:

Carbon nanotubes are one of the materials that can replace platinum as DSSC’s counter electrode. By utilizing carbon nanotubes (CNT), which is an organic material in place of platinum it is possible to create an inexpensive solar cell. However, there are still many problems with CNT such as low conversion compared with platinum and fast degradation in CNT. At the present time, it is to be large surface area when we fabricate CNT electrode sintered at 500°C with Electrophoretic Deposition (EPD). We measured how conversion efficiency changed by changing sintering temperatures. As a result, when CNT electrode sintered at 500°C, conversion efficiency was the highest and it was 2.46%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

465-469

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Cho, K. Konopka, K. Rozniatowski, E. Garcia-Lecina, M. S. P. Shaffer, and A. R. Boccaccini, Characterisation of carbon nanotube films deposited by electrophoretic deposition, CARBON, 2009, vol. 47, p.58–67.

DOI: 10.1016/j.carbon.2008.08.028

Google Scholar

[2] B. O'. Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, pp.353-737.

DOI: 10.1038/353737a0

Google Scholar

[3] G. Smestad, C. Bignozzi, and R. Argazzi, Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies, Sol. Energy Mater. Sol. Cells, 1994, vol. 32, p.259.

DOI: 10.1016/0927-0248(94)90211-9

Google Scholar

[4] Z. Q. Lin, Y. K. Lai, R. G. Hu, J. Li, R. G. Du, and C. J. Lin, A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals, Electrochim Acta, 2010, vol. 55, p.8717.

DOI: 10.1016/j.electacta.2010.08.017

Google Scholar

[5] H. J. Tian, L. H. Hu, W. X. Li, J. Sheng, S. Y. Xu, S. Y. Dai, and J. Mater, Superior energy band structure and retarded charge recombination for Anatase N, B codoped nano-crystalline TiO2 anodes in dye-sensitized solar cells, Chem. Commun, 2011, vol. 21 p.7074.

DOI: 10.1039/c2jm16896k

Google Scholar

[6] P. Sudhagar, J. H. Jung, S. Park, R. Sathyamoorthy, H. Ahn, and Y. S. Kang, The performance of coupled (CdS: CdSe) quantum dot-sensitized TiO2 nano fibrous solar cells, Electrochim. Acta, 2009, vol. 55 p.113.

DOI: 10.1016/j.electacta.2009.08.015

Google Scholar

[7] W. Y. Fu, H. B. Yang, P. Sun, Y. Y. Zhang, L. R. Wang, W. Y. Zhao, H. Zhao, et, al. Chemical bath deposition of Cu2O quantum dots onto ZnO nano rod arrays for application in photovoltaic devices, RSC Advances, 2015, vol. 30, pp.23401-23409.

DOI: 10.1039/c4ra13776k

Google Scholar

[8] G. Zhu, L. Pan, T. Xu, Q. Zhao, B. Lu, and Z. Sun, Microwave assisted CdSe quantum dot deposition on TiO2 films for dyesensitized solar cells, Nanoscale, 2011, vol. 3, p.2188.

DOI: 10.1039/c1nr10068h

Google Scholar

[9] J. Z. Chen, B. Li, J. F. Zheng, J. H. Zhao, H. W. Jing, and Z. P. Zhu, Polyaniline nano fiber/carbon film as flexible counter electrodes in platinum-free dye-sensitized solar cells, Electrochim Acta, 2011, vol. 56, p.4624.

DOI: 10.1016/j.electacta.2011.02.097

Google Scholar

[10] X. Z. Liu, Y. H. Luo, H. Li, Y. Z. Fan, Z. X. Yu, Y. Lin, et al., Ce phosphors as a scattering layer for high-efficiency dye sensitized solar cells, Chem. Commun, 2007, vol. 27 p.2847.

Google Scholar

[11] W. Guo, Y. H. Shen, G. Boschloo, A. Hagfeldt, and T. Ma, Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells, Electrochimica Acta, 2011, vol. 5, p.4611–4617.

DOI: 10.1016/j.electacta.2011.02.091

Google Scholar

[12] W. Shao, F. Gu, L. L. Gai, C. Z. Li, et al., Forest-like TiO2 hierarchical structures for efficient dye-sensitized solar cells, Chem. Commun, 2010, vol. 22, p.6824.

DOI: 10.1039/c2jm15442k

Google Scholar