[1]
T.A. Harris, M.N. Kotzalas, Rolling bearing analysis, fourth ed., Wiley, New York, (2001).
Google Scholar
[2]
M.R. Hoeprich, H. Zantopulos, Line contact deformation: a cylinder between two flat plates, J. Lubri. Technol. – T. ASME. 103 (1981) 21-25.
DOI: 10.1115/1.3251609
Google Scholar
[3]
L. Houpert, An engineering approach to Hertzian contact elasticity - part I, J. Tribol. -T. ASME. 123 (2001) 582-588.
DOI: 10.1115/1.1308043
Google Scholar
[4]
L. Houpert, An engineering approach to non-Hertzian contact elasticity - part II, J. Tribol. -T. ASME. 123 (2001) 589-594.
DOI: 10.1115/1.1308042
Google Scholar
[5]
T.L. Horng, S.H. Ju, K.C. Cha, A deformation formula for circular crowned roller compressed between two flat plates, J. Tribol. -T. Asme. 122 (2000) 405-411.
DOI: 10.1115/1.555376
Google Scholar
[6]
T.L. Horng, Analyses of stress components for a circular crowned roller compressed between two flat plates, P. I. Mech. Eng. J. -J. Eng. 221 (2007) 581-589.
DOI: 10.1243/13506501jet263
Google Scholar
[7]
H. Fujiwara, T. Kobayashi, T. Kawase and K. Yamauchi, Optimized logarithmic roller crowning design of cylindrical roller bearings and its experimental demonstration, Tribol. T. 53 (2010) 909-916.
DOI: 10.1080/10402004.2010.510619
Google Scholar
[8]
H. Fujiwara, T. Kawase, Logarithmic profiles of rollers in roller bearings and optimization of the profiles, P. JSME. 72 (2006) 3022-3029.
Google Scholar
[9]
S. Kamamoto, K. Fujimoto, T. Yamamoto, Research on crowning profile to obtain the maximum load carrying capacity for roller bearings, Koyo Eng. J. 159 (2001) 44-51.
Google Scholar
[10]
H. Reusner, The logarithmic roller profile- the key to superior performance of cylindrical and taper roller bearings, Ball Bearing J. 230 (1987) 2-10.
Google Scholar
[11]
V. Tong, S. Hong, Characteristics of tapered roller bearings in relation to roller profiles, J. Mech. Sci. Technol. 29 (2015) 2913-2919.
DOI: 10.1007/s12206-015-0622-z
Google Scholar
[12]
B. Ramu, V.V.R. Murthy, Contact analysis of cylindrical roller bearing using different roller profiles, Int. J. Res. Mech. Eng. Technol. 3 (2013) 29-33.
Google Scholar
[13]
L. Cui, Y. He, A new logarithmic profile model and optimization design of cylindrical roller bearing, Ind. Lubr. Tribol. 67 (2015) 498-508.
DOI: 10.1108/ilt-01-2015-0006
Google Scholar
[14]
N. Ahmadi, L.M. Keer, T. Mura, Non-Hertzian contact stress analysis for an elastic half space- normal and sliding contact, Int. J. Solids Struct. 19 (1983) 357-373.
DOI: 10.1016/0020-7683(83)90032-x
Google Scholar
[15]
K.L. Johnson, Contact mechanics, Cambridge University Press, Cambridge, (1987).
Google Scholar
[16]
S. Creţu, E. Antaluca, O. Creţu, The study of non-Hertzian concentrated contacts by a GC-DFFT technique, An. Dunarea de Jos, U. Galaţi VIII-Tribol. 8 (2003) 39-47.
Google Scholar
[17]
M.R. Hoeprich, Rolling element bearing contact geometry analysis, Tribol. T. 38 (1995) 879-882.
DOI: 10.1080/10402009508983484
Google Scholar
[18]
R. Teutsch, B. Sauer, An alternative slicing technique to consider pressure concentrations in non-Hertzian line contacts, J. Tribol. - T. ASME. 126 (2004) 436-442.
DOI: 10.1115/1.1739244
Google Scholar
[19]
V.S. Jadhao and J. J. Salunke, Design and analysis of a proposed cylindrical roller for CRB using FEA, Int. J. Pure Appl. Res. Eng. Technol. 3 (2015) 99-111.
Google Scholar
[20]
P.M. Johns, R. Gohar, Roller bearings under radial and eccentric loads, Tribol. Int. 14 (1981) 131-136.
DOI: 10.1016/0301-679x(81)90058-x
Google Scholar