Design and Analysis of Flow Field in Electrochemical Cutting Processing by Arranged Tube Electrode

Article Preview

Abstract:

The large complex structure integral components composed of difficult-to-machine material (such as titanium alloy, high temperature alloy) are more and more widely applied in aerospace, weapon equipment and other industries. The material utilization rate and the processing efficiency of the milling process are very low, the cost is high. Micro copper tubes (diameter 2mm, inner diameter 1.6mm) are arranged to electrode with shape to be processed, which could cut these components with a high efficiency and low cost. The fabrication of electrode is simple and convenient, so the cost of electrode could be reduced too. The flow field design is an important problem to be solved. The model of flow field is established, and flow field of different cathodes are simulated.The analysis results show that the rectifying ring is favorable for the electrochemical machining. Finally, the cathode with rectifying ring is used in processing experiment, the edge of cutting zone is orderly, no spark and short circuit occurs. Straight line and circular hole is successfully processed. The feasibility of the scheme is proved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-76

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. B. Zeng, Q. Yu, S. H. Wang, D. Zhu, Enhancement of mass transport in micro wire electrochemical machining, CIRP Annals-Manuf. Technol. 61(1) (2012) 195-198.

DOI: 10.1016/j.cirp.2012.03.082

Google Scholar

[2] Q. Yu, Y. B. Zeng, H. Zhang, D. Zhu, N. S. Qu, Technology on anode vibration aided wire electrode micro-electrochemical Machining, J. Mech. Eng. 48(23) (2012) 178-182.

DOI: 10.3901/jme.2012.23.178

Google Scholar

[3] K. Xu, Y. B. Zeng, et al. Vibration assisted wire electrochemical micro machining of array micro tools, Precis. Eng. 47 (2017) 487-497.

DOI: 10.1016/j.precisioneng.2016.10.004

Google Scholar

[4] T. A. El-Taweel, S. A. Gouda, Study on the wire electrochemical groove turning process, J. Appl. Electrochem. 41(2) (2011) 161-171.

DOI: 10.1007/s10800-010-0220-9

Google Scholar

[5] B. H. Kim, C. W. Na, Y. S. Lee, et al. Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid, CIRP Annals-Manuf. Technol. 54(1) (2005) 191-194.

DOI: 10.1016/s0007-8506(07)60081-x

Google Scholar

[6] B. Chen, Current Status and Development of Ultra High Pressure Waterjet Cutting Machine, Aeronaut. Manuf. Technol. 6 (2009) 66-68.

Google Scholar

[7] W. Wang, D. Zhu, N. S. Qu, Electrochemical drilling with vacuum extraction of electrolyte, J. Mater. Process. Technol. 210(2) (2010) 238-244.

Google Scholar

[8] Z. L. Li, S. C. Di, Research on Accuracy Control of Deep Small Holes by Pulse Electrochemical Machining, ACTA ARMAMENTARII, 33 (2012) 414-418.

Google Scholar

[9] M. Burger, L. Koll, et al. Electrochemical machining characteristics and resulting surface quality of the nickel-base single-crystalline material LEK94, J. Manuf. Processes. 14(1) (2012) 62-70.

DOI: 10.1016/j.jmapro.2011.08.001

Google Scholar

[10] F. Klocke, M. Zeis, et al. Optical In Situ Measurements and Interdisciplinary Modeling of the Electrochemical Sinking Process of Inconel 718, Procedia CIRP, 24 (2014) 114-119.

DOI: 10.1016/j.procir.2014.08.014

Google Scholar

[11] X. L. Fang, N. S. Qu, et al. Effects of Pulsating Electrolyte flow in Electrochemical Machining, J. Mater. Process. Technol. 214(1) (2014) 36-43.

Google Scholar

[12] F. Klocke, A. Klink, et al. Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes, CIRP Annals – Manuf. Technol. 63(2) (2014) 703-726.

DOI: 10.1016/j.cirp.2014.05.004

Google Scholar

[13] N. Ma, W. J. Xu, X. Y. Wang, B. Tao, Pulse electrochemical finishing: Modeling and experiment, J. Mater. Process. Technol. 210(6-7) (2010) 852-857.

DOI: 10.1016/j.jmatprotec.2010.01.016

Google Scholar

[14] K. P. Rajurkar, M. M. Sundaram, et al. Review of Electrochemical and Electrodischarge Machining, Procedia CIRP. 6 (2013) 13-26.

DOI: 10.1016/j.procir.2013.03.002

Google Scholar

[15] F. Klocke, M. Zeis, A. Klink, D, Veselovac, Technological and Economical Comparison of Roughing Strategies via Milling, EDM and ECM for Titanium-and Nickel-based Blisks, Procedia CIRP. 2 (2012) 98-101.

DOI: 10.1016/j.procir.2012.05.048

Google Scholar

[16] Z. G. Zhou, Computational Fluid Dynamics, First ed. Southeast University Press, Nanjing, (2008).

Google Scholar