Entangled Photon Source of Quantum Key Generator from Micro Ring Resonator for QKD Use

Article Preview

Abstract:

The powerful novel invention of entangled photon source by using a nonlinear silica micro ring resonator for quantum cryptography use was established and investigated. This entangled photon pair was generated under the degenerated four wave mixing process under the phase mismatch adjusment. The corresponding entangled photon generation Hamiltonian was established and studied in term of EPR pair. The obtained entangled photon pairs can be applied to the quantum cryptography distribution under quantum teleportation process showing the feasible and suitable for quantum information communication via the high visibility and $Q$ factor results. The advantage of this novel entangled photon source will be proved to become a part of quantum distribution device in the near future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-187

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. H. Bennett, D. P. DiVincenzo, Quantum information and computation, Nature 404 (2000) 247 - 255.

Google Scholar

[2] N. Gisin, Grégoire Ribordy, W. Tittel, H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74 (2002) 145 - 195.

DOI: 10.1103/revmodphys.74.145

Google Scholar

[3] J. Yin, et al., Satellite-based entanglement distribution over 1200 kilometers, Science 356(6343) (2017) 1140 - 1144.

Google Scholar

[4] R. Horodecki, et al., Quantum entanglement, Rev. Mod. Phys. 81 (2009) 865 - 942.

DOI: 10.1103/revmodphys.81.865

Google Scholar

[5] R. Demkowicz-Dobrzański, et al., Entanglement enhances security in quantum communication, Phys. Rev. A. 80 (2009) 012311-1 - 012311-8.

Google Scholar

[6] T Jennewein, et al., Quantum cryptography with entangled photons, Phys. Rev. Lett. 84(20) (2000) 4729 - 4732.

DOI: 10.1103/physrevlett.84.4729

Google Scholar

[7] L. Zhang, C. Silberhorn, I. A. Walmsley1, Secure quantum key distribution using continuous variables of single photons, Phys. Rev. Lett. 100(11) (2008) 110504-1 - 110504-4.

DOI: 10.1103/physrevlett.100.110504

Google Scholar

[8] E. Engin, et al., Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement, Optics Express 21(23) (2013) 27826 - 27834.

DOI: 10.1364/oe.21.027826

Google Scholar

[9] H. Takesue, K. Inoue, Generation of 1. 5 μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers, Phys. Rev. A. 72 (2005) 041804(R)-1 - 041804(R)-4.

DOI: 10.1103/physreva.72.041804

Google Scholar

[10] C. H. Bennett, et al., Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels, Phys. Rev. Lett. 70 (1993) 1895 - 1899.

DOI: 10.1103/physrevlett.70.1895

Google Scholar

[11] J. Li, et al., One step quantum key distribution based on EPR entanglement, Scientific Reports 6(28767) (2016) 1 - 3.

Google Scholar

[12] Yan-Lin Tang, et al., Measurement-device-independent quantum key distribution over untrustful metropolitan network, Phys. Rev. X. 6 (2016) 011024-1 - 011024-8.

Google Scholar