Adaptivity as a Property to Achieve Resilience of Load-Carrying Systems

Article Preview

Abstract:

Load-carrying systems often suffer from unexpected disruptions which can cause damages or system breakdowns if they were neglected during product development. In this context, unexpected disruptions summarize unpredictable load conditions, external disturbances or failures of system components and can be comprehended as uncertainties caused by nescience. While robust systems can cope with stochastic uncertainties, uncertainties caused by nescience can be controlled only by resilient load-carrying systems. This paper gives an overview of the characteristics of resilience as well as the time-dependent resilient behaviour of subsystems. Based on this, the adaptivity of subsystems is classified and can be distinguished between autonomous and externally induced adaption and the temporal horizon of adaption. The classification of adaptivity is explained using a simple example of a joint brake application.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] H. Hanselka, R. Platz, Ansätze und Maßnahmen zur Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus, In Konstruktion. November/Dezember 2010, S. 55-62.

Google Scholar

[2] T. Freund, Konstruktionshinweise zur Beherrschung von Unsicherheit in technischen Systemen, Dissertation, Technische Universität Darmstadt, Fachgebiet für Produktentwicklung und Maschinenelemente, (2018).

Google Scholar

[3] T. Eifler, Modellgestützte Methodik zur systematischen Analyse von Unsicherheit im Lebenslauf technischer Systeme, Dissertation, Technische Universität Darmstadt, Fachgebiet für Produktentwicklung und Maschinenelemente, (2014).

Google Scholar

[4] R. Kühnpast, Das System der selbsthelfenden Lösungen in der maschinenbaulichen Konstruktion, Dissertation, Technische Hochschule Darmstadt, Fachgebiet für Maschinenelemente, (1968).

Google Scholar

[5] S. Mallapur and R. Platz, Quantification and evaluation of uncertainty in the mathematical modelling of a suspension strut using bayesian model validation approach,, in Model Validation and Uncertainty Quantification, Volume 3 (Barthorpe Robert J., R. Platz, I. Lopez, B. Moaveni, and C. Papadimitriou, eds.), Conference proceedings of the Society for Experimental Mechanics series, (Cham), p.113{124, Springer International Publishing, (2017).

DOI: 10.1007/978-3-319-54858-6_12

Google Scholar

[6] T. Eifler, G. C. Enss, M. Haydn, L. Mosch, R. Platz, H. Hanselka, Approach for a Consistent Description of Uncertainty in Process Chains of Load Carrying Mechanical Systems. In: Applied Mechanics and Materials. Vol. 104, pp.133-144. (2011) Trans Tech Publications.

DOI: 10.4028/www.scientific.net/amm.104.133

Google Scholar

[7] D. D. Woods, Essential Characteristics of Resilience, in: E. Hollnagel, D. Woods and N. Leveson, (Ed.), Resilience Engineering – Concepts and Precepts, Ashgate, transferred to digital printing in 2010, Farnham, pp.21-34.

DOI: 10.1201/9781315605685

Google Scholar

[8] E. Hollnagel and D. D. Woods, Epilogue: Resilience Engineering Precepts, in: E. Hollnagel, D. D. Woods and N. Leveson (Ed.), Resilience Engineering – Concepts and Precepts, Ashgate, transferred to digital printing in 2010, Farnham, pp.347-358.

DOI: 10.1201/9781315605685-30

Google Scholar

[9] J. Würtenberger, S. Gramlich, T. Freund, J. Lotz, M. Zocholl, H. Kloberdanz, Uncertainty in product modelling within the development process, In Applied Mechanics and Materials. Vol. 807, pp.89-98, Trans Tech Publications.

DOI: 10.4028/www.scientific.net/amm.807.89

Google Scholar

[10] L. Altherr, N. Brötz, I. Dietrich, T. Gally, F. Geßner, H. Kloberdanz, P. Leise, P. Schlemmer and A. Schmitt, Resilience in Mechanical Engineering – A Concept for Controlling Uncertainty during Design, Production and Usage Phase of Load-Carrying Structures, In Applied Mechanics and Materials. Trans Tech Publications. Under review.

DOI: 10.4028/www.scientific.net/amm.885.187

Google Scholar

[11] K. Tierney and M. Bruneau, Conceptualizing and measuring resilience: A key to disaster loss reduction, TR News 250 (2007).

Google Scholar

[12] J. Mathias, H. Kloberdanz, R. Engelhardt and H. Birkhofer, Strategies and Principles to design robust products, Proceedings of the DESIGN 2010 / 11th International Design Conference, Dubrovnik, Croatia, May 17-20, 2010, pp.341-350.

Google Scholar

[13] Pahl, G., Beitz, W., Feldhusen, J. and Grote K. H. (2007), Engineering Design: A Systematic Approach, third Edition, Springer London.

Google Scholar

[14] S. Jackson, Evaluation of Resilience Principles for Engineered Systems, PhD thesis, University of South Australia, (2016).

Google Scholar

[15] S. Jackson, Architecting Resilient Systems: Accident Avoidance and Survival and Recovery from Disruptions, Wiley, Hoboken, (2009).

Google Scholar

[16] A. M. Madni and S. Jackson, Towards a Conceptual Framework for Resilience Engineering, IEEE Systems Journal, July 2009.

Google Scholar

[17] D. D. Woods and E. Hollnagel, Prologue: Resilience Engineering Concepts, in: E. Hollnagel, D. D. Woods and N. Leveson, (Ed.), Resilience Engineering – Concepts and Precepts, Ashgate, transferred to digital printing in 2010, Farnham, pp.1-6.

DOI: 10.1201/9781315605685-1

Google Scholar

[18] J. Feldhusen, K.-H. Grote, G. Pahl, W. Beitz, eds., Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung. 8. vollst. überarb. Aufl., Springer Verlag, Berlin, Heidelberg (2013).

DOI: 10.1007/978-3-642-29569-0_12

Google Scholar

[19] Z. Sun, G.S. Yang, B. Zhang and W. Zhang, On the Concept of Resilient Machine. 6th IEEE Conference on Industrial Electronics and Applications 2011, 978-1-4244-8756-1/11.

Google Scholar

[20] H. Meffert, Zum Problem der betriebswirtschaftlichen Flexibilität. Zeitschrift für Betriebswirtschaft, 1969, vol. 39, no. 12, pp.779-800.

Google Scholar

[21] C. M. Gehb, R. Platz, and T. Melz, Active load path adaption in a simple kinematic load-bearing structure due to stiffness change in the structure's supports, Journal of Physics: Conference Series, vol. 744, no. 1, p.012168, (2016).

DOI: 10.1088/1742-6596/744/1/012168

Google Scholar

[22] C. M. Gehb, R. Platz, and T. Melz, Global load path adaption in a simple kinematic load-bearing structure to compensate uncertainty of misalignment due to changing stiffness conditions of the structure's supports, in: Model Validation and Uncertainty Quantification, Volume 3 (Barthorpe Robert J., R. Platz, I. Lopez, B. Moaveni, and C. Papadimitriou, eds.), Conference proceedings of the Society for Experimental Mechanics series, (Cham), pp.133-144, Springer International Publishing, (2017).

DOI: 10.1007/978-3-319-54858-6_14

Google Scholar

[23] Y. Y. Haimes, Y. Y., On the Definition of Resilience in Systems. Risk Analysis, 2009, Vol. 29, No. 4, pp.498-501.

Google Scholar