Determining Mechanical Causes that Produce Dental Wear Using Finite Element Method

Article Preview

Abstract:

Dental wear has accompanied human evolution, being strictly related to its way of life. Dental wear is a lesion of dental hard tissue commonly found in dental practice. Starting from the virtual skull model, the virtual models of the two upper premolars on the left hemisphere were generated, then the finite element method evaluated the stresses, displacements and strains generated by the resistance forces from the dental tissues of the two premolars during mandibular movements with occlusal contact. It is found that the value of these results increases as dental wear increases. This phenomenon is more visible in the teeth where the value almost doubles. Two explanations could be given for this situation: mechanically, these stresses are inversely proportional to the volume of the dental structures and, as they reduce, through dental wear, increase the stress, also, the sharp edges resulting from dental wear are mechanical stress concentrators.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-22

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.L. Brace, Occlusion to the anthropological eye, McNamara JA. The Biology of Occlusal development, (1977) 179-209.

Google Scholar

[2] P. Wetselaar, J.H. Vermaire, C. M. Visscher, F. Lobbezoo, A. A. Schuller, The Prevalence of Tooth Wear, the Dutch Adult Population Caries Res. 50 (2016) 543–550.

DOI: 10.1159/000447020

Google Scholar

[3] T. Jaeggi, A. Lussi, Prevalence, incidence and distribution of erosion, Monogr Oral Sci. (2014) 55-73.

Google Scholar

[4] D. W. Bartlett, A. Lussi, N. X. West, P. Bouchard, M. Sanz, D. Bourgeois, Prevalence of tooth wear on buccal and lingual surfaces and possible risk factors in young European adults, J Dent. 41 (2013) 1007-1021.

DOI: 10.1016/j.jdent.2013.08.018

Google Scholar

[5] A. Van't Spijker, J. M. Rodriguez, C. M. Kreulen, E. M. Bronkhorst, D. W. Bartlett, N. H. Creugers, Prevalence of tooth wear in adults, Int J Prosthodont., 22 (2009) 35-42.

DOI: 10.1159/000308567

Google Scholar

[6] E. Rose, I. Tsesis, A. Tamse, Speculations, knowledge, and evidence about crown and root fractures, Evidence-Based Endodontics, (2017).

DOI: 10.1186/s41121-017-0009-y

Google Scholar

[7] L.K. Bakland, A. Tamse, Categorization of dental fractures. In: Tamse A, Tsesis I, Rosen E (eds). Vertical root fractures in dentistry. Springer International Publishing, Switzerland, (2015), 7–28.

DOI: 10.1007/978-3-319-16847-0_2

Google Scholar

[8] A. Tamse, A. Katz., R. Pilo, Furcation Groove of the buccal root of maxillary first premolars - A Morphometric study, J Endod., 6 (2006) 59–63.

DOI: 10.1097/00004770-200006000-00012

Google Scholar

[9] S. Dallongeville, Les lesions cervicales d¢usure: etiologies et prises en charge, These pour le Diplome d¢Etat de docteur en Chirurgie Dentaire, Universite de Nantes, (2010).

Google Scholar

[10] W.C. Lee, W. S. Eakle, Stress-induced cervical lesions: review of advances in the past 10 years.J Prosthet Dent., 75 (1996) 87-94.

Google Scholar

[11] I.D. Bader, D. A. Shugars,  Variation in clinical decision making related to caries. In: Fejerskov O, Kidd E, editors. Dental Caries: The Disease and Its Clinical Management. 2nd ed. Copenhagen: Blackwell Munksgaard Ltd, (2008) 555-574.

Google Scholar

[12] M. Vatu, M.M. Craitoiu, D. Vintila, V. Mercut, M.S. Popescu, M. Scrieciu, D.L. Popa, Determination of resistance forces from mandibular movements through dynamic simulation using kinematic analysis and finite elements method, Romanian Journal of Oral Rehabilitation, 1-10 (2018) 20-28.

Google Scholar

[13] M. Vatu, D. Vintilă, D.L. Popa, 3D Skull Virtual Model, Based on CT or MRI Images, Used for Dentistry Simulations, Applied Mechanics and Materials, 880 (2018) 101-110.

DOI: 10.4028/www.scientific.net/amm.880.101

Google Scholar

[14] M. Vatu, D. Vintila, R. Mercut, S.M. Popescu, D.L. Popa, I.L. Petrovici, G. Vintila, A. Pitru, Three-dimensional modeling of the dental-maxillary system, Journal of Industrial Design and Engineering Graphics, 1-14 (2019) 207-210.

Google Scholar

[15] D.L. Popa, A. Duță, D. Tutunea, G. Gherghina, G. Buciu, D.C. Calin, Virtual Methods Applied to Human Bones and Joints Re-Construction Used for Orthopedic Systems, Applied Mechanics and Materials, 822 (2016) 160-165.

DOI: 10.4028/www.scientific.net/amm.822.160

Google Scholar

[16] D.L. Popa, A. Duta, A.R. Pitru, The Modeling of Some Types of Implants and Prostheses Used for Osteointegration, SDÜ Mühendislik Bilimleri ve Tasarım Dergisi; Cilt 2, Sayı 3 (2014) 273-281.

Google Scholar

[17] D.N. Tarniţă, D. Tarniţă, D. Popa, R. Tarniţă, Analysis of stress and displacements of phalanx bone with the finite element method, Romanian Journal of Morphology and Embryology, 46-3 (2005) 189-191.

Google Scholar

[18] D. Tarniţă, D. Popa, D.N. Tarniţă, D. Grecu, M. Negru, The virtual model of the prosthetic tibial components, Rom J Morphol Embryol, 47-4 (2006) 339-344.

Google Scholar

[19] D. Tarnita, D.N. Tarnita, D. Popa, D. Grecu, R. Tarnita, The Method of Finite Element applied to the study of stress distribution of tibia, Biomaterials and Biomechanics: Fundamentals and Clinical Applications, Essen, Germany, (2005).

Google Scholar

[20] G. Buciu, D.L. Popa, D. Grecu, D. Niculescu, R. Nemes, Comparative analysis of the three new designs of tibial nails which eliminate the use of orthopedic screws, Lux Libris Publishing House, (2012) 387-392.

Google Scholar

[21] M.L. Hsu, C.L. Chang, Application of finite element analysis in dentistry, Finite Element Analysis, InTech, (2010) 43-66.

DOI: 10.5772/10007

Google Scholar

[22] M. Cicciù, G. Cervino, E. Bramanti, F. Lauritano, G. LoGudice, L. Scappaticci, A. Rapparini, E. Guglielmino, G. Risitano, FEM Analysis of Mandibular Prosthetic Overdenture Supported by Dental Implants: Evaluation of Different Retention Methods, Hindawi Publishing Corporation, Computational and Mathematical Methods in Medicine, Volume 2015, Article ID 943839, (2015) 16 pages.

DOI: 10.1155/2015/943839

Google Scholar

[23] F. Keulemans, A. Shinya, L.V.J. Lassila, P.K. Vallittu, C.J. Kleverlaan, A.J. Feilzer, R. J.G. DeMoor, Three-Dimensional Finite Element Analysis of Anterior Two-Unit Cantilever Resin-Bonded Fixed Dental Prostheses, Hindawi Publishing Corporation, Scientific World Journal Volume, (2015) 1-10.

DOI: 10.1155/2015/864389

Google Scholar

[24] S. Benazzi, N.H. Nguyen, O. Kullmer, K. Kupczik, Dynamic Modelling of Tooth Deformation Using Occlusal Kinematics and Finite Element Analysis, PLOSONE, (2016) 1-17.

DOI: 10.1371/journal.pone.0152663

Google Scholar