[1]
C.L. Brace, Occlusion to the anthropological eye, McNamara JA. The Biology of Occlusal development, (1977) 179-209.
Google Scholar
[2]
P. Wetselaar, J.H. Vermaire, C. M. Visscher, F. Lobbezoo, A. A. Schuller, The Prevalence of Tooth Wear, the Dutch Adult Population Caries Res. 50 (2016) 543–550.
DOI: 10.1159/000447020
Google Scholar
[3]
T. Jaeggi, A. Lussi, Prevalence, incidence and distribution of erosion, Monogr Oral Sci. (2014) 55-73.
Google Scholar
[4]
D. W. Bartlett, A. Lussi, N. X. West, P. Bouchard, M. Sanz, D. Bourgeois, Prevalence of tooth wear on buccal and lingual surfaces and possible risk factors in young European adults, J Dent. 41 (2013) 1007-1021.
DOI: 10.1016/j.jdent.2013.08.018
Google Scholar
[5]
A. Van't Spijker, J. M. Rodriguez, C. M. Kreulen, E. M. Bronkhorst, D. W. Bartlett, N. H. Creugers, Prevalence of tooth wear in adults, Int J Prosthodont., 22 (2009) 35-42.
DOI: 10.1159/000308567
Google Scholar
[6]
E. Rose, I. Tsesis, A. Tamse, Speculations, knowledge, and evidence about crown and root fractures, Evidence-Based Endodontics, (2017).
DOI: 10.1186/s41121-017-0009-y
Google Scholar
[7]
L.K. Bakland, A. Tamse, Categorization of dental fractures. In: Tamse A, Tsesis I, Rosen E (eds). Vertical root fractures in dentistry. Springer International Publishing, Switzerland, (2015), 7–28.
DOI: 10.1007/978-3-319-16847-0_2
Google Scholar
[8]
A. Tamse, A. Katz., R. Pilo, Furcation Groove of the buccal root of maxillary first premolars - A Morphometric study, J Endod., 6 (2006) 59–63.
DOI: 10.1097/00004770-200006000-00012
Google Scholar
[9]
S. Dallongeville, Les lesions cervicales d¢usure: etiologies et prises en charge, These pour le Diplome d¢Etat de docteur en Chirurgie Dentaire, Universite de Nantes, (2010).
Google Scholar
[10]
W.C. Lee, W. S. Eakle, Stress-induced cervical lesions: review of advances in the past 10 years.J Prosthet Dent., 75 (1996) 87-94.
Google Scholar
[11]
I.D. Bader, D. A. Shugars, Variation in clinical decision making related to caries. In: Fejerskov O, Kidd E, editors. Dental Caries: The Disease and Its Clinical Management. 2nd ed. Copenhagen: Blackwell Munksgaard Ltd, (2008) 555-574.
Google Scholar
[12]
M. Vatu, M.M. Craitoiu, D. Vintila, V. Mercut, M.S. Popescu, M. Scrieciu, D.L. Popa, Determination of resistance forces from mandibular movements through dynamic simulation using kinematic analysis and finite elements method, Romanian Journal of Oral Rehabilitation, 1-10 (2018) 20-28.
Google Scholar
[13]
M. Vatu, D. Vintilă, D.L. Popa, 3D Skull Virtual Model, Based on CT or MRI Images, Used for Dentistry Simulations, Applied Mechanics and Materials, 880 (2018) 101-110.
DOI: 10.4028/www.scientific.net/amm.880.101
Google Scholar
[14]
M. Vatu, D. Vintila, R. Mercut, S.M. Popescu, D.L. Popa, I.L. Petrovici, G. Vintila, A. Pitru, Three-dimensional modeling of the dental-maxillary system, Journal of Industrial Design and Engineering Graphics, 1-14 (2019) 207-210.
Google Scholar
[15]
D.L. Popa, A. Duță, D. Tutunea, G. Gherghina, G. Buciu, D.C. Calin, Virtual Methods Applied to Human Bones and Joints Re-Construction Used for Orthopedic Systems, Applied Mechanics and Materials, 822 (2016) 160-165.
DOI: 10.4028/www.scientific.net/amm.822.160
Google Scholar
[16]
D.L. Popa, A. Duta, A.R. Pitru, The Modeling of Some Types of Implants and Prostheses Used for Osteointegration, SDÜ Mühendislik Bilimleri ve Tasarım Dergisi; Cilt 2, Sayı 3 (2014) 273-281.
Google Scholar
[17]
D.N. Tarniţă, D. Tarniţă, D. Popa, R. Tarniţă, Analysis of stress and displacements of phalanx bone with the finite element method, Romanian Journal of Morphology and Embryology, 46-3 (2005) 189-191.
Google Scholar
[18]
D. Tarniţă, D. Popa, D.N. Tarniţă, D. Grecu, M. Negru, The virtual model of the prosthetic tibial components, Rom J Morphol Embryol, 47-4 (2006) 339-344.
Google Scholar
[19]
D. Tarnita, D.N. Tarnita, D. Popa, D. Grecu, R. Tarnita, The Method of Finite Element applied to the study of stress distribution of tibia, Biomaterials and Biomechanics: Fundamentals and Clinical Applications, Essen, Germany, (2005).
Google Scholar
[20]
G. Buciu, D.L. Popa, D. Grecu, D. Niculescu, R. Nemes, Comparative analysis of the three new designs of tibial nails which eliminate the use of orthopedic screws, Lux Libris Publishing House, (2012) 387-392.
Google Scholar
[21]
M.L. Hsu, C.L. Chang, Application of finite element analysis in dentistry, Finite Element Analysis, InTech, (2010) 43-66.
DOI: 10.5772/10007
Google Scholar
[22]
M. Cicciù, G. Cervino, E. Bramanti, F. Lauritano, G. LoGudice, L. Scappaticci, A. Rapparini, E. Guglielmino, G. Risitano, FEM Analysis of Mandibular Prosthetic Overdenture Supported by Dental Implants: Evaluation of Different Retention Methods, Hindawi Publishing Corporation, Computational and Mathematical Methods in Medicine, Volume 2015, Article ID 943839, (2015) 16 pages.
DOI: 10.1155/2015/943839
Google Scholar
[23]
F. Keulemans, A. Shinya, L.V.J. Lassila, P.K. Vallittu, C.J. Kleverlaan, A.J. Feilzer, R. J.G. DeMoor, Three-Dimensional Finite Element Analysis of Anterior Two-Unit Cantilever Resin-Bonded Fixed Dental Prostheses, Hindawi Publishing Corporation, Scientific World Journal Volume, (2015) 1-10.
DOI: 10.1155/2015/864389
Google Scholar
[24]
S. Benazzi, N.H. Nguyen, O. Kullmer, K. Kupczik, Dynamic Modelling of Tooth Deformation Using Occlusal Kinematics and Finite Element Analysis, PLOSONE, (2016) 1-17.
DOI: 10.1371/journal.pone.0152663
Google Scholar