[1]
D. P. Ferris, G. S. Sawicki, A. Domingo, Powered lower limb orthoses for gait rehabilitation, Topics in Spinal Cord Injury Rehabilitation 11 (2005) 34–49.
DOI: 10.1310/6gl4-um7x-519h-9jyd
Google Scholar
[2]
D Tarnita, M Catana, D.N. Tarnita, Design and Simulation of an Orthotic Device for Patients with Osteoarthritis, New Trends in Medical and Service Robots, Springer (2016) pp.61-77.
DOI: 10.1007/978-3-319-23832-6_6
Google Scholar
[3]
M. Catana, D. Tarnita, D.N. Tarnita, Modeling, Simulation and Optimization of a Human Knee Orthotic Device, Applied Mechanics and Materials 371 (2013) 549-553.
DOI: 10.4028/www.scientific.net/amm.371.549
Google Scholar
[4]
I. Geonea, D. Tarnita, Design and evaluation of a new exoskeleton for gait rehabilitation, Mechanical Sciences 8(2) (2017) 307-322.
DOI: 10.5194/ms-8-307-2017
Google Scholar
[5]
S. K. Banala, S. K. Agrawal, Gait rehabilitation with an active leg orthosis, ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, California, USA (2005) 459–465.
DOI: 10.1115/detc2005-85071
Google Scholar
[6]
M. van der Esch, M. Steultjens, J. Harlaar, N. Wolterbeek, D.L. Knol, J. Dekker, Knee varus-valgus motion during gait – A measure of joint stability in patients with osteoarthritis?, Osteoarthritis and Cartilage 16 (2008) 522–525.
DOI: 10.1016/j.joca.2007.08.008
Google Scholar
[7]
D. Tarnita, I. Geonea, A. Petcu, D.N. Tarnita, Numerical Simulations and Experimental Human Gait Analysis Using Wearable Sensors, New Trends in Medical and Service Robots, Springer (2018) 289-304.
DOI: 10.1007/978-3-319-59972-4_21
Google Scholar
[8]
G. M. Freisinger, E. E. Hutter, J. Lewis, J. F. Granger, A. H. Glassman, M. D. Beal, X. L. Pan, L. C. Schmitt, R. A. Siston, A. M. W. Chaudhari, Relationships between varus-valgus laxity of the severely osteoarthritic knee and gait, instability, clinical performance, and function, Journal of Orthopaedic Research 35 (2017) 1644–1652.
DOI: 10.1002/jor.23447
Google Scholar
[9]
D. Tarniţă, I. Geonea, A. Petcu, D.N. Tarnita, Experimental Characterization of Human Walking on Stairs Applied to Humanoid Dynamics, Advances in Robot Design and Intelligent Control, Springer (2016) 293-301.
DOI: 10.1007/978-3-319-49058-8_32
Google Scholar
[10]
D. Tarnita, C. Berceanu, C. Tarnita, The three-dimensional printing–a modern technology used for biomedical prototypes, Materiale plastic 47 (2010) 328-334.
Google Scholar
[11]
W. Petersen, A. Ellermann, T. Zantop, I V Rembitzki, H. Semsch, C. Liebau, R. Best, Biomechanical effect of unloader braces for medial osteoarthritis of the knee: A systematic review, Archives of Orthopaedic and Trauma Surgery 136 (2016) 649–656.
DOI: 10.1007/s00402-015-2388-2
Google Scholar
[12]
D. Popa, D. Tarnita, I. Iordachita, Study Method For Human Knee Applicable To Humanoid Robots, Proceedings of The 14th International Workshop on Robotics in Alpe-Adria-Danube Region 5 (2005) 26-28.
Google Scholar
[13]
D. Tarnita, D. Popa, D.N. Tarnita, D. Grecu, CAD method for 3D model of the tibia bone and study of stresses using the finite element method, Rom J Morphol Embryol 47 (2006)181-186.
Google Scholar
[14]
M. Alpesh, Total knee arthroplasty, Trisha Trauma Centre & ICU, http://www.trishatrau macentre.com/orthopaedic.html.
Google Scholar
[15]
Information on http://www.morsa.com.tr.
Google Scholar
[16]
Information on https://www.ossur.com.
Google Scholar
[17]
Information on http://www.ottobock.com.
Google Scholar
[18]
Information on http://www.donjoy.eu.
Google Scholar
[19]
Information on http://www.enlife.ro.
Google Scholar