[1]
D. Antonescu, Pathology of the locomotor apparatus, (in Romanian), vol II, Ed.Med. 2008, pp.301-305, pp.502-505, pp.512-514, pp.782-784.
Google Scholar
[2]
D. Grecu D, News in hip arthroplasty, (in Romanian), Ed Aius Craiova, 2005, pp.15-19, pp.29-30.
Google Scholar
[3]
D. Calin, D. Tarniţă, D. Popa, D. Calafeteanu, D. N. Tarnita, Virtual Model and Simulation of the Normal and Affected Human Hip Joint, Applied Mechanics and Materials, 823 (2016) 167-172.
DOI: 10.4028/www.scientific.net/amm.823.167
Google Scholar
[4]
D. Calin, D. Tarniţă, D. Popa, A. Rosca, D.N. Tarnita, The 3D Virtual Model of a Classical Hip Joint Prosthesis, Applied Mechanics and Materials, 823 (2016) 161-166.
DOI: 10.4028/www.scientific.net/amm.823.161
Google Scholar
[5]
M. Vatu, M.M. Craitoiu, D. Vintila, V. Mercut, M.S. Popescu, M. Scrieciu, D.L. Popa, Determination of resistance forces from mandibular movements through dynamic simulation using kinematic analysis and finite elements method, Romanian Journal of Oral Rehabilitation, 1-10 (2018) 20-28.
Google Scholar
[6]
M. Vatu, D. Vintilă, D.L. Popa, 3D Skull Virtual Model, Based on CT or MRI Images, Used for Dentistry Simulations, Applied Mechanics and Materials, 880 (2018) 101-110.
DOI: 10.4028/www.scientific.net/amm.880.101
Google Scholar
[7]
M. Vatu, D. Vintila, R. Mercut, S.M. Popescu, D.L. Popa, I.L. Petrovici, G. Vintila, A. Pitru, Three-dimensional modeling of the dental-maxillary system, Journal of Industrial Design and Engineering Graphics, 1-14 (2019) 207-210.
Google Scholar
[8]
D.L. Popa, A. Duță, D. Tutunea, G. Gherghina, G. Buciu, D.C. Calin, Virtual Methods Applied to Human Bones and Joints Re-Construction Used for Orthopedic Systems, Applied Mechanics and Materials, 822 (2016) 160-165.
DOI: 10.4028/www.scientific.net/amm.822.160
Google Scholar
[9]
D.L. Popa, A. Duta, A.R. Pitru, The Modeling of Some Types of Implants and Prostheses Used for Osteointegration, SDÜ Mühendislik Bilimleri ve Tasarım Dergisi; Cilt 2, Sayı 3 (2014) 273-281.
Google Scholar
[10]
D.N. Tarniţă, D. Tarniţă, D. Popa, R. Tarniţă, Analysis of stress and displacements of phalanx bone with the finite element method, Romanian Journal of Morphology and Embryology, 46-3 (2005) 189-191.
Google Scholar
[11]
D. Tarniţă, D. Popa, D.N. Tarniţă, D. Grecu, M. Negru, The virtual model of the prosthetic tibial components, Rom J Morphol Embryol, 47-4 (2006) 339-344.
Google Scholar
[12]
D. Tarnita, D.N. Tarnita, D. Popa, D. Grecu, R. Tarnita, The Method of Finite Element applied to the study of stress distribution of tibia, Biomaterials and Biomechanics: Fundamentals and Clinical Applications, Essen, Germany, (2005).
Google Scholar
[13]
G. Buciu, D.L. Popa, D. Grecu, D. Niculescu, R. Nemes, Comparative analysis of the three new designs of tibial nails which eliminate the use of orthopedic screws, Lux Libris Publishing House, (2012) 387-392.
Google Scholar
[14]
N.G. Bîzdoacă, D.N. Tarniţă, D. Tarniţă, D Popa, E. Bîzdoacă, Shape memory alloy based modular adaptive ortophedic impants, Proceedings of the 1st WSEAS international conference on Biomedical electronics and biomedical informatics, (2008), 188-195.
DOI: 10.1142/9789812835772_0023
Google Scholar
[15]
G. Buciu, D.N. Tarnita, D.L. Popa, M.A. Lungu, C. Miritoiu, A. Ungureanu, Virtual and Experimental Studies about Human Walking-Virtual Lower Leg Environment-Innovative Design of Tibia Nail, Applied Mechanics and Materials, 657 (2014) 770-774.
DOI: 10.4028/www.scientific.net/amm.657.770
Google Scholar
[16]
Daniela Tarnita, C Boborelu, D Popa, D-N Tarnita, Design and Finite Element Analysis of a New Spherical Prosthesis-Elbow Joint Assembly, New Advances in Mechanism and Machine Science, (2018) 127-135.
DOI: 10.1007/978-3-319-79111-1_12
Google Scholar