Modelling the Stiffness Element in the Multi-Degree of Freedom Mass-Spring System

Article Preview

Abstract:

Structural dynamics in structural engineering analysis involves the modal parameters (natural frequency, mode shape and damping ratio). The modal parameters of engineering structures is mainly influenced by the damping and stiffness properties. This research paper presents the reliability of CELAS element in the finite element modelling to represent the stiffness parameter. The simplified engineering structure considered in this study is a mass-spring system with multi-degree of freedom. Experimental modal testing is performed using an electro-magnetic vibration shaker as an exciter and an accelerometer to record the natural frequency of the system. HyperMesh normal mode analysis is used to compute the natural frequency of the mass-spring system. The comparative evaluation is performed in order to identify the accuracy of the natural frequencies obtained from the modelling analysis and the measured counterparts. Consequently, it is found that the element CELAS has a good capability to represent as the stiffness parameter in the finite element modelling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Li, Y. Yuan, P. He, J. Yuan, H. Yu, Improved equivalent mass-spring model for seismic response analysis of two-dimensional soil strata, Soil Dyn. Earthq. Eng. 112 (2018) 198-202.

DOI: 10.1016/j.soildyn.2018.05.001

Google Scholar

[2] M.N. Abdul Rani, H. Ouyang, M.A. Yunus, B.A. Aminudin, Model updating for a thin steel sheet welded structure, 20th International Congress on Sound & Vibration (2013).

Google Scholar

[3] R.R. Craig Jr., A.J. Kurdila, Fundamentals of Structural Dynamics, second ed., John Wiley & Sons, (2011).

Google Scholar

[4] D. Radomirovic, I. Kovacic, Deflection and potential energy of linear and nonlinear springs: approximate expressions in terms of generalized coordinates, Eur. J. Phys. 34(3) (2013) 537–546.

DOI: 10.1088/0143-0807/34/3/537

Google Scholar

[5] E.M. Lui, Y. Liu, M. Oguzmert, Effects of diaphragm spacing and stiffness on the dynamic behavior of curved steel bridges, Steel Structures 6 (2006) 163-174.

Google Scholar

[6] A. Bourdim, A. Meghdir, A. Bouizem, Numerical study on dynamic behavior of boring bar of unequal bending stiffness, Proceedings in Manufacturing Systems 7(2) (2012).

Google Scholar

[7] J.A. Zakeri, V. Ghorbani, Investigation on dynamic behavior of railway track in transition zone, J. Mech. Sci. Technol. 25(2) (2011) 287-292.

DOI: 10.1007/s12206-010-1202-x

Google Scholar

[8] R. Omar, M.N. Abdul Rani, W.I.I. Wan Iskandar Mirza, M.A. Yunus, M.H. Othman, Finite element modelling and updating for bolted lap joints, J. Mech. Eng. SI 4(3) (2017) 202-222.

DOI: 10.1088/1757-899x/506/1/012009

Google Scholar

[9] K.C. Chang, C.W. Kim, Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge, Eng. Struct. 122 (2016) 156–173.

DOI: 10.1016/j.engstruct.2016.04.057

Google Scholar

[10] X. Lei, B. Zhang, Analyses of dynamic behavior of track transition with finite elements, J. Vib. Control 17(11) (2010) 1733–1747.

DOI: 10.1177/1077546310385035

Google Scholar

[11] A. Saxena, M. Chouksey, A. Parey, Effect of mesh stiffness of healthy and cracked gear tooth on modal and frequency response characteristics of geared rotor system, Mech. Mach. Theory 107 (2017) 261-273.

DOI: 10.1016/j.mechmachtheory.2016.10.006

Google Scholar

[12] L.M. Khoo, P.R. Mantena, P. Jadhav, Structural damage assessment using vibration modal analysis, Struct. Health Monit. 3(2) (2004) 177-194.

DOI: 10.1177/1475921704042680

Google Scholar

[13] J. Ahmad, S. Cheng, F. Ghrib, Effect of the number of cross-tie lines on the in-plane stiffness and modal behavior classification of orthogonal cable networks with multiple lines of transverse flexible cross-ties, J. Eng. Mech. 142(4) (2016) 1-13.

DOI: 10.1061/(asce)em.1943-7889.0001008

Google Scholar

[14] T. Liu, A.W. Bargteil, J.F. O'Brien, L. Kavan, Fast simulation of mass-spring systems, Proceedings ACM Transactions on Graphics 32(6) (2013).

DOI: 10.1145/2508363.2508406

Google Scholar

[15] K. Zhao, L. Cheng, S. Li, A. Liao, A new updating method for the damped mass-spring systems, Appl. Math. Model. 62 (2018) 119–133.

DOI: 10.1016/j.apm.2018.05.024

Google Scholar

[16] W. Wan, Constructing a damped spring-mass system with prescribed mixed eigendata, Procedia Eng. 174 (2017) 1268-1275.

DOI: 10.1016/j.proeng.2017.01.301

Google Scholar

[17] D. Zhou, T. Ji, Estimation of dynamic characteristics of a spring-mass-beam system, Shock Vib. 14 (2007) 271–282.

DOI: 10.1155/2007/127964

Google Scholar

[18] A.A. Nikooyanz, A.A. Zadpoor, Mass-spring-damper modelling of the human body to study running and hopping - an overview, Proceedings of IMechE 225 Part H: J. Engineering in Medicine (2011).

DOI: 10.1177/0954411911424210

Google Scholar

[19] D. Radomovic, I. Kovacic, Stiffness properties of certain oscillatory systems: quantification and possibilities for corrections, Eur. J. Phys. 36 (2015) 1-15.

DOI: 10.1088/0143-0807/36/3/035031

Google Scholar

[20] A.D. Shaw, S.A. Neild, D.J. Wagg, P.M. Weaver, A. Carrella, A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation, J. Sound Vib. 332(24) (2013) 6265-6275.

DOI: 10.1016/j.jsv.2013.07.016

Google Scholar

[21] B. Lakhlani, H. Yadav, Development and analysis of an experimental setup of spring - mass - damper system, Procedia Eng. 173 (2017) 1808-1815.

DOI: 10.1016/j.proeng.2016.12.223

Google Scholar

[22] M.S.A. Sulaiman, M.A. Yunus, A.R. Bahari AR, M.N. Abdul Rani MN, Identification of damage based on frequency response function (frf) data, MATEC Web of Conferences 90(01025) (2017) 1-9.

DOI: 10.1051/matecconf/20179001025

Google Scholar

[23] M.S. Mohd Zin, M.N. Abdul Rani, M.A. Yunus, W.I.I. Wan Iskandar Mirza, A.A. Mat Isa, Z. Mohamed, Modal and frf based updating methods for the investigation of the dynamic behaviour of a plate, J. Mech. Eng. 4(3) (2017) 175-189.

DOI: 10.1063/1.5032017

Google Scholar

[24] Test certificate, 2013. Guangdong Guangyun Aluminium In-dustry Co. Ltd., China.

Google Scholar

[25] J.W. Ringsberg, P. Ernholm, L. Hagström, Analysis of free vibration characteristics and mode shapes of a semi-submersible platform, Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering (2011).

DOI: 10.1115/omae2011-49088

Google Scholar