[1]
L. Pfotzer, S. Klemm, A. Roennau, J. M. Zöllner, and R. Dillmann, Autonomous navigation for reconfigurable snake-like robots in challenging, unknown environments, Rob. Auton. Syst., vol. 89, p.123–135, 2017. https://doi.org/10.1016/j.robot.2016.11.010.
DOI: 10.1016/j.robot.2016.11.010
Google Scholar
[2]
K. Hashimoto, T. Matsuzawa, T. Teramachi, K. Uryu, and X. Sun, A four-limbed disaster-response robot having high mobility capabilities in extreme environments, p.5398–5405, 2017. https://doi.org/10.1109/IROS.2017.8206436.
DOI: 10.1109/iros.2017.8206436
Google Scholar
[3]
B. M. Hudock, B. E. Bishop, and F. L. Crabbe, On the development of a novel urban search and rescue robot, Thirty-Sixth Southeast. Symp. Syst. Theory, 2004. Proc., p.451–455, 3793. https://doi.org/10.1109/SSST.2004.1295698.
DOI: 10.1109/ssst.2004.1295698
Google Scholar
[4]
H. Amano, K. Osuka, and T. J. Tarn, Development of vertically moving robot with gripping handrails for fire fighting, IEEE Int. Conf. Intell. Robot. Syst., vol. 2, p.661–667, 2001. https://doi.org/10.1109/IROS.2001.976245.
DOI: 10.1109/iros.2001.976245
Google Scholar
[5]
Y. F. Golubev and V. V. Koryanov, A control for an insectomorphic robot in climbing to the top of a vertical corner and in moving on a step ladder, J. Comput. Syst. Sci. Int., vol. 47, no. 1, p.139–148, 2008. https://doi.org/10.1134/S1064230708010176.
DOI: 10.1134/s1064230708010176
Google Scholar
[6]
K. Inoue, S. Fujii, T. Takubo, Y. Mae, and T. Arai, Ladder climbing method for the limb mechanism robot asterisk, Adv. Robot., vol. 24, no. 11, p.1557–1576, 2010. https://doi.org/10.1163/016918610X512596.
DOI: 10.1163/016918610x512596
Google Scholar
[7]
H. Yoneda, K. Sekiyama, Y. Hasegawa, and T. Fukuda, Vertical ladder climbing motion with posture control considering gravitation momentum for multi-locomotion robot, Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions Japan Soc. Mech. Eng. Part C, vol. 75, no. 751, p.22–26, 2009. https://doi.org/10.1109/IROS.2008.4651212.
DOI: 10.1109/iros.2008.4651212
Google Scholar
[8]
J. Luo et al., Robust ladder-climbing with a humanoid robot with application to the DARPA Robotics Challenge, Proc. - IEEE Int. Conf. Robot. Autom., p.2792–2798, 2014. https://doi.org/10.1109/ICRA.2014.6907259.
DOI: 10.1109/icra.2014.6907259
Google Scholar
[9]
J. Vaillant et al., Vertical ladder climbing by the HRP-2 humanoid robot, IEEE-RAS Int. Conf. Humanoid Robot., vol. 2015–Febru, p.671–676, 2015. https://doi.org/10.1109/HUMANOIDS.2014.7041435.
DOI: 10.1109/humanoids.2014.7041435
Google Scholar
[10]
M. Kanazawa et al., Robust vertical ladder climbing and transitioning between ladder and catwalk for humanoid robots, IEEE Int. Conf. Intell. Robot. Syst., vol. 2015–Decem, p.2202–2209, 2015. https://doi.org/10.1109/IROS.2015.7353672.
DOI: 10.1109/iros.2015.7353672
Google Scholar
[11]
S. Noda, M. Murooka, S. Nozawa, Y. Kakiuchi, K. Okada, and M. Inaba, Generating whole-body motion keep away from joint torque, contact force, contact moment limitations enabling steep climbing with a real humanoid robot, Proc. - IEEE Int. Conf. Robot. Autom., p.1775–1781, 2014. https://doi.org/10.1109/ICRA.2014.6907091.
DOI: 10.1109/icra.2014.6907091
Google Scholar
[12]
J. Vaillant et al., Multi-contact vertical ladder climbing with an HRP-2 humanoid, Auton. Robots, vol. 40, no. 3, p.561–580, 2016. https://doi.org/10.1007/s10514-016-9546-4.
DOI: 10.1007/s10514-016-9546-4
Google Scholar
[13]
Y. Zhang, L. Jingru, and K. Hauser, Planner-aided Design of Ladder Climbing Capabilities for a DARPA Robotics Challenge Humanoid, in IEEE ICRA Workshop on Progress and Open Problems in Mo-tion Planning and Navigation for Humanoids, (2013).
Google Scholar
[14]
P. Gyawali and J. McGough, Simulation of detecting and climbing a ladder for a humanoid robot, IEEE Int. Conf. Electro Inf. Technol., 2013. https://doi.org/10.1109/EIT.2013.6632710.
DOI: 10.1109/eit.2013.6632710
Google Scholar
[15]
H.-J. Chung, Y. Xiang, R. Bhatt, J. S. Arora, and K. Abdel-Malek, Predictive simulation of human walk-to-run transition, vol. 2, 32nd Comput. Inf. Eng. Conf. Parts A B, no. January 2016, p.653–657, 2012. https://doi.org/10.1115/DETC2013-13258.
DOI: 10.1115/detc2012-70171
Google Scholar
[16]
Y. Zhang et al., Motion planning of ladder climbing for humanoid robots, IEEE Conf. Technol. Pract. Robot Appl. TePRA, no. 1218534, p.1–6, 2013. https://doi.org/10.1109/TePRA. 2013.6556364.
DOI: 10.1109/tepra.2013.6556364
Google Scholar
[17]
P. Even and R. Fournier, Telerobotics tasks execution based on 3D geometric modelling and graphical programming, Proc. IEEE Syst. Man Cybern. Conf. - SMC, p.132–137, 1993. https://doi.org/10.1109/ICSMC.1993.384998.
DOI: 10.1109/icsmc.1993.384998
Google Scholar
[18]
P. G. Kim et al., Obstacle avoidance of a mobile robot using vision system and ultrasonic sensor, Adv. Intell. Colmputing Theor. Appl. (Proc. Int. Conf. Intell. Comput., vol. 4681, pp.545-553, 2007. https://doi.org/10.1007/978-3-540-74171-8_54.
Google Scholar
[19]
J. S. Quah and M. Ghazaly, Development and Analysis of Face Recognition System on a Mobile Robot Environment, J. Mech. Eng., vol. 15, no. 2, p.169–189, (2018).
Google Scholar
[20]
F. Dominik, Na komin 2014, 2014. [Online]. Available: https://dominikfedor.xyz/robotics.html. [Accessed: 02-Jun-2018].
Google Scholar
[21]
M. M. Ghazaly, S. K. Yew, Z. Abdullah, M. A. Mohd Ali, C. S. Horng, and A. C. Amran, Trajectory tracking of a mobile robot system, J. Mech. Eng., no. Special Issue 1, p.207–226, (2017).
Google Scholar
[22]
R. D. Schraft and G. Schmierer, Service Robots. AK Peters Ltd, 2000. https://doi.org/10.1007/978-3-642-88176-3.
Google Scholar