Design and Development of Ladder Climbing Robot

Article Preview

Abstract:

This paper presents the development of a ladder climbing robot prototype. The development of the prototype includes constructing the basic software and hardware for the robot. The robot controller is designed using Arduino Mega 2560 software implemented in Arduino IDE with C programming. The hardware development involves constructing the main chassis and climbing arm with servomotor, DC geared motor and motor driver. An algorithm to climb ladder is developed with application of Infrared (IR) sensor and ultrasonic sensors. Significantly, the robot prototype is tested on ladders of different rung spacing. In the future, a base with wheels will be constructed for the robot to carry load and move on ground with obstacle avoidance capability and side grippers will be constructed to improve climbing performance of the robot on vertical ladder; this project will contribute to future research on similar topics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-41

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Pfotzer, S. Klemm, A. Roennau, J. M. Zöllner, and R. Dillmann, Autonomous navigation for reconfigurable snake-like robots in challenging, unknown environments, Rob. Auton. Syst., vol. 89, p.123–135, 2017. https://doi.org/10.1016/j.robot.2016.11.010.

DOI: 10.1016/j.robot.2016.11.010

Google Scholar

[2] K. Hashimoto, T. Matsuzawa, T. Teramachi, K. Uryu, and X. Sun, A four-limbed disaster-response robot having high mobility capabilities in extreme environments, p.5398–5405, 2017. https://doi.org/10.1109/IROS.2017.8206436.

DOI: 10.1109/iros.2017.8206436

Google Scholar

[3] B. M. Hudock, B. E. Bishop, and F. L. Crabbe, On the development of a novel urban search and rescue robot, Thirty-Sixth Southeast. Symp. Syst. Theory, 2004. Proc., p.451–455, 3793. https://doi.org/10.1109/SSST.2004.1295698.

DOI: 10.1109/ssst.2004.1295698

Google Scholar

[4] H. Amano, K. Osuka, and T. J. Tarn, Development of vertically moving robot with gripping handrails for fire fighting, IEEE Int. Conf. Intell. Robot. Syst., vol. 2, p.661–667, 2001. https://doi.org/10.1109/IROS.2001.976245.

DOI: 10.1109/iros.2001.976245

Google Scholar

[5] Y. F. Golubev and V. V. Koryanov, A control for an insectomorphic robot in climbing to the top of a vertical corner and in moving on a step ladder, J. Comput. Syst. Sci. Int., vol. 47, no. 1, p.139–148, 2008. https://doi.org/10.1134/S1064230708010176.

DOI: 10.1134/s1064230708010176

Google Scholar

[6] K. Inoue, S. Fujii, T. Takubo, Y. Mae, and T. Arai, Ladder climbing method for the limb mechanism robot asterisk, Adv. Robot., vol. 24, no. 11, p.1557–1576, 2010. https://doi.org/10.1163/016918610X512596.

DOI: 10.1163/016918610x512596

Google Scholar

[7] H. Yoneda, K. Sekiyama, Y. Hasegawa, and T. Fukuda, Vertical ladder climbing motion with posture control considering gravitation momentum for multi-locomotion robot, Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions Japan Soc. Mech. Eng. Part C, vol. 75, no. 751, p.22–26, 2009. https://doi.org/10.1109/IROS.2008.4651212.

DOI: 10.1109/iros.2008.4651212

Google Scholar

[8] J. Luo et al., Robust ladder-climbing with a humanoid robot with application to the DARPA Robotics Challenge, Proc. - IEEE Int. Conf. Robot. Autom., p.2792–2798, 2014. https://doi.org/10.1109/ICRA.2014.6907259.

DOI: 10.1109/icra.2014.6907259

Google Scholar

[9] J. Vaillant et al., Vertical ladder climbing by the HRP-2 humanoid robot, IEEE-RAS Int. Conf. Humanoid Robot., vol. 2015–Febru, p.671–676, 2015. https://doi.org/10.1109/HUMANOIDS.2014.7041435.

DOI: 10.1109/humanoids.2014.7041435

Google Scholar

[10] M. Kanazawa et al., Robust vertical ladder climbing and transitioning between ladder and catwalk for humanoid robots, IEEE Int. Conf. Intell. Robot. Syst., vol. 2015–Decem, p.2202–2209, 2015. https://doi.org/10.1109/IROS.2015.7353672.

DOI: 10.1109/iros.2015.7353672

Google Scholar

[11] S. Noda, M. Murooka, S. Nozawa, Y. Kakiuchi, K. Okada, and M. Inaba, Generating whole-body motion keep away from joint torque, contact force, contact moment limitations enabling steep climbing with a real humanoid robot, Proc. - IEEE Int. Conf. Robot. Autom., p.1775–1781, 2014. https://doi.org/10.1109/ICRA.2014.6907091.

DOI: 10.1109/icra.2014.6907091

Google Scholar

[12] J. Vaillant et al., Multi-contact vertical ladder climbing with an HRP-2 humanoid, Auton. Robots, vol. 40, no. 3, p.561–580, 2016. https://doi.org/10.1007/s10514-016-9546-4.

DOI: 10.1007/s10514-016-9546-4

Google Scholar

[13] Y. Zhang, L. Jingru, and K. Hauser, Planner-aided Design of Ladder Climbing Capabilities for a DARPA Robotics Challenge Humanoid, in IEEE ICRA Workshop on Progress and Open Problems in Mo-tion Planning and Navigation for Humanoids, (2013).

Google Scholar

[14] P. Gyawali and J. McGough, Simulation of detecting and climbing a ladder for a humanoid robot, IEEE Int. Conf. Electro Inf. Technol., 2013. https://doi.org/10.1109/EIT.2013.6632710.

DOI: 10.1109/eit.2013.6632710

Google Scholar

[15] H.-J. Chung, Y. Xiang, R. Bhatt, J. S. Arora, and K. Abdel-Malek, Predictive simulation of human walk-to-run transition, vol. 2, 32nd Comput. Inf. Eng. Conf. Parts A B, no. January 2016, p.653–657, 2012. https://doi.org/10.1115/DETC2013-13258.

DOI: 10.1115/detc2012-70171

Google Scholar

[16] Y. Zhang et al., Motion planning of ladder climbing for humanoid robots, IEEE Conf. Technol. Pract. Robot Appl. TePRA, no. 1218534, p.1–6, 2013. https://doi.org/10.1109/TePRA. 2013.6556364.

DOI: 10.1109/tepra.2013.6556364

Google Scholar

[17] P. Even and R. Fournier, Telerobotics tasks execution based on 3D geometric modelling and graphical programming, Proc. IEEE Syst. Man Cybern. Conf. - SMC, p.132–137, 1993. https://doi.org/10.1109/ICSMC.1993.384998.

DOI: 10.1109/icsmc.1993.384998

Google Scholar

[18] P. G. Kim et al., Obstacle avoidance of a mobile robot using vision system and ultrasonic sensor, Adv. Intell. Colmputing Theor. Appl. (Proc. Int. Conf. Intell. Comput., vol. 4681, pp.545-553, 2007. https://doi.org/10.1007/978-3-540-74171-8_54.

Google Scholar

[19] J. S. Quah and M. Ghazaly, Development and Analysis of Face Recognition System on a Mobile Robot Environment, J. Mech. Eng., vol. 15, no. 2, p.169–189, (2018).

Google Scholar

[20] F. Dominik, Na komin 2014, 2014. [Online]. Available: https://dominikfedor.xyz/robotics.html. [Accessed: 02-Jun-2018].

Google Scholar

[21] M. M. Ghazaly, S. K. Yew, Z. Abdullah, M. A. Mohd Ali, C. S. Horng, and A. C. Amran, Trajectory tracking of a mobile robot system, J. Mech. Eng., no. Special Issue 1, p.207–226, (2017).

Google Scholar

[22] R. D. Schraft and G. Schmierer, Service Robots. AK Peters Ltd, 2000. https://doi.org/10.1007/978-3-642-88176-3.

Google Scholar