[1]
B. Lu, M. Song, Z. Zhou, W. Liu, B. Wang, S. Lu, C. Wu, L. Yang, and J. Liu, Reducing mechanical hysteresis via tuning the microstructural orientations in Heusler-type Ni44.8Mn36.9 In13.3Co5.0 elastocaloric alloys, Journal of Alloys and Compounds 785 (2019) 1023-1029.
DOI: 10.1016/j.jallcom.2019.01.276
Google Scholar
[2]
P. Garnier, J.-B.L. Cam, and M. Grédiac, The influence of cyclic loading conditions on the viscoelastic properties of filled rubber, Mechanics of Materials 56 (2013) 84-94.
DOI: 10.1016/j.mechmat.2012.10.001
Google Scholar
[3]
M.T. Loukil, G. Corvec, E. Robin, M. Miroir, J.-B.L. Cam, and P. Garnier, Stored energy accompanying cyclic deformation of filled rubber, European Polymer Journal 98 (2018) 448-455.
DOI: 10.1016/j.eurpolymj.2017.11.035
Google Scholar
[4]
J.-B.L. Cam, Energy storage due to strain-induced crystallization in natural rubber: The physical origin of the mechanical hysteresis, Polymer 127 (2017) 166-173.
DOI: 10.1016/j.polymer.2017.08.059
Google Scholar
[5]
N. Duongruitai and J. Tharaak, A potential application of the mechanical tensile strength test for indicating paper biodegradation, Key Engineering Materials 723 (2016) 183-190.
DOI: 10.4028/www.scientific.net/kem.723.183
Google Scholar
[6]
R. Muangma, S. Wongsaenmai, and T. Soitong, Numerical-experimental model and polynomial regression method for interpretation of G-BHN relation of Kraft-based fibrous composites evaluated by using Brinell analysis, Key Engineering Materials 798 (2019) 370-375.
DOI: 10.4028/www.scientific.net/kem.798.370
Google Scholar
[7]
R. Muangma, K. Supawan, M. Thepnurat, P. Saphet, and A. Tong-on, Development of DAS for prototype of brinell-macro-hardness tester using triplex of force-resistive-sensors manipulated by raspberry pi 3 model B. Journal of Physics: Conference Series 1380 (2019) 012086.
DOI: 10.1088/1742-6596/1380/1/012086
Google Scholar
[8]
R. Muangma, Contrivance and modification of in-house Brinell hardness tester for BHN determination of soft materials. Journal of Physics: Conference Series 1144 (2018) 012111.
DOI: 10.1088/1742-6596/1144/1/012111
Google Scholar
[9]
B. Wang, G. Kang, Q. Kan, W. Wu, K. Zhou, and C. Yu, Atomistic study on the super-elasticity of single crystal bulk NiTi shape memory alloy under adiabatic condition, Computational Materials Science 142 (2018) 38-46.
DOI: 10.1016/j.commatsci.2017.10.011
Google Scholar
[10]
M. Kawai, Effects of matrix inelasticity on the overall hysteretic behavior of TiNi-SMA fiber composites, International Journal of Plasticity, 16 (2000) 263-282.
DOI: 10.1016/s0749-6419(99)00054-6
Google Scholar
[11]
L. Longbiao, Synergistic effects of hold time and cyclic loading on fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites at elevated temperatures in oxidizing atmosphere, Engineering Fracture Mechanics 199 (2018) 672-691.
DOI: 10.1016/j.engfracmech.2018.07.002
Google Scholar
[12]
J. Ma, L. Tian, Y. Li, Z. Yang, Y. Cui, and J. Chu, Hysteresis compensation of piezoelectric deformable mirror based on Prandtl–Ishlinskii model, Optics Communications 416 (2018) 94-99.
DOI: 10.1016/j.optcom.2018.02.001
Google Scholar