The Effect of Annealing Temperature on Structure of TiCrN Thin Film Deposited by DC Magnetron Sputtering Method

Article Preview

Abstract:

The DC reactive magnetron sputtering method was employed to deposit Titanium Chromium Nitride (TiCrN) thin film on silicon (100) substrates. The coatings were annealed at different temperature from 700°C to 1000°C with increase step of 100 °C in air for 2 h. The crystal structure, surface morphologies, microstructure and chemical compositions were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). The x-ray patterns confirmed the TiO2 rutile structure with strong preferred orientation of (101) plane was appeared from 700°C. The crystallinity of film increased with the annealing temperatures. The lattice constant (a and c) were in the range of 4.565 – 4.607 Å and 2.946 – 2.956 Å. The void between grain boundaries was confirmed by FE-SEM micrograph. The cross-sectional analysis revealed that the porous structure with enhancement of thickness from 1.64 - 1.95 μm were obtained as increase annealing temperatures. The EDX results indicated that the O content increase from 0 – 60.67 At% whereas the Ti, Cr, and N contents were decreased from 43.26 - 22.40 At%, 20.65 – 2.57 At% and 51.19 – 14.36 At% through the annealing temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-36

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Novakovic´, M. Popovic´, N. Bibic, Ion-beam irradiation effects on reactively sputtered CrN thin films, Nucl. Instr. Meth. Phys. Res. B. 268 (2010) 2883-2887.

DOI: 10.2298/pac1101025n

Google Scholar

[2] J. Azadeh, Z. Ghoranneviss, A. S.E. Jafari, M. Ghoranneviss, N. Fasihi Yazdi, A. Rezaei, Effects of Annealing on TiN Thin Film Growth by DC Magnetron Sputtering, Adv. Mech. Eng. 268 (2014) 1-6.

DOI: 10.1155/2014/373847

Google Scholar

[3] S. Logothetidis, E.I. Meletis, G. Stergioudis, A.A. Adjaottor Aristotle, Room temperature oxidation behavior of TiN thin films, Thin Solid Films. 338 (1999) 304-313.

DOI: 10.1016/s0040-6090(98)00975-4

Google Scholar

[4] S.M. Aouadia, K.C. Wong, K.A.R. Mitchell, F. Namavar, E. Tobin, D.M. Mihut, S.L. Rohde, Characterization of titanium chromium nitride nanocomposite protective coatings, Appl. Surf. Sci. 229 (2004) 387-394.

DOI: 10.1016/j.apsusc.2004.02.019

Google Scholar

[5] S. Chen, D. Luo, G. Zhao, Investigation of the properties of TixCr1-xN coatings prepared by cathodic arc deposition, Phys. Procedia. 50 (2013) 163-168.

DOI: 10.1016/j.phpro.2013.11.027

Google Scholar

[6] V.M. Vishnyakov, V.I. Bachurin, K.F. Minnebaev, R. Valizadeh, D.G. Teer, J.S. Colligon, V.V. Vishnyakov, V.E. Yurasova, Ion assisted deposition of titanium chromium nitride, Thin Solid Films. 497 (2006) 189-195.

DOI: 10.1016/j.tsf.2005.05.005

Google Scholar

[7] C. Paksunchai, S. Denchitcharoen, S. Chaiyakun, P. Limsuwan, Effect of Sputtering Current on Structure and Morphology of (Ti1-xCrx)N Thin Films Deposited by Reactive Unbalanced Magnetron Co-sputtering, Procedia Eng. 32 (2012) 189-195.

DOI: 10.1016/j.proeng.2012.02.026

Google Scholar

[8] S. Samapisut, U. Tipparach, G. Heness, G. McCredie, Effect of Magnetron Discharge Power and N2 Flow Rate for Preparation of TiCrN Thin Film, Procedia Eng. 32 (2012) 1135-1138.

DOI: 10.1016/j.proeng.2012.02.067

Google Scholar

[9] Otani, S. Hofmann, High temperature oxidation behaviour of (Ti1-xCrx )N coatings, Thin Solid Films. 287 (1996) 188-192.

DOI: 10.1016/s0040-6090(96)08789-5

Google Scholar

[10] William D, Callister Jr. Materials science and engineering: an introduction. 7th ed. New York: John Wiley & Sons Inc; (2007).

Google Scholar

[11] H.Y. Chen, F.H. Lu, Oxidation behavior of titanium nitride films, J. Vac. Sci. Technol. A. 23 (4) (2003) 1006-1009.

Google Scholar

[12] F. Wang, M. Z. Wu, Y. Y. Wang, Y. M. Yu, X. M. Wu, L.J. Zhug, Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films, Vacuum. 89 (2013) 127–131.

DOI: 10.1016/j.vacuum.2012.02.040

Google Scholar

[13] H.U. Igwe, E.I. Ugwu, Optical characteristics of nanocrystalline thermal annealed tin oxide (SO2) thin film samples prepared by chemical bath deposition technique, J. Adv. Appl. Sci. Res. 1 (2010) 240–246.

Google Scholar

[14] F. Aliaj, N. Syla, H. Oettel, T. Dilo, Thermal treatment in air of direct current (DC) magnetron sputtered TiN coatings, Sci. Res. Essays, 11(21) (2016) 230– 238.

DOI: 10.5897/sre2016.6456

Google Scholar

[15] S. Berg, T. Nyberg, Fundamental understanding and modeling of reactive sputtering processes, Thin Solid Films, 476 (2005) 215– 230.

DOI: 10.1016/j.tsf.2004.10.051

Google Scholar

[16] D.B. Lee, M.H. Kim, Y.C. Lee, S.C. Kwon, High temperature oxidation of TiCrN coatings deposited on a steel substrate by ion plating, Surf. Coat. Technol, 141 (2001) 232-239.

DOI: 10.1016/s0257-8972(01)01237-3

Google Scholar