Magnetic Structured Triboelectric Nanogenerators for Energy Harvesting

Article Preview

Abstract:

Abstract. Triboelectric nanogenerators (TENG) have made significant progress as a sustainable energy harvesting technique due to their ease of assembly, high power density, good stability and cost-efficiency. This study develops the magnetic structured triboelectric nanogenerators (MS-TENG) for energy harvesting with different loading frequency. The MS-TENG use magnetic force in the sliding mode to provide the repulsive force. The dielectric and electrode components, in particular, are appropriately connected to the circuit, which is attached to the digital oscilloscope for voltage performance. The copper capsules in mode two were the most effective design for the MS-TENG. The highest load-circuit voltage of 4.0 V is obtained for the copper (Cu) MS-TENG in mode 2 (dielectric capsule designed in mode 2 is first coated with a layer of Cu or Al and then covered with Kapton). A peak power in this design is 3.4 µW. The suggested MS-TENG offers a practical way to gather electrical energy via the triboelectric effect, which are suitable for multifunctional applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-88

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Zheng, B. Shi, Z. Li, ZL. Wang: Adv Sci Vol.4 (2017), p.1700029.

Google Scholar

[2] H. Askari, A. Khajepour, MB. Khamesee, Z. Saadatnia, ZL. Wang: Nano Today Vol. 22 (2018), pp.10-13.

DOI: 10.1016/j.nantod.2018.08.001

Google Scholar

[3] A. Jie, P. Chen, C. Li, F. Li, T. Jiang, Z.L. Wang: Nano Energy Vol.93 (2022), p.106884.

Google Scholar

[4] C. Shengnan, L. Zhou, D. Liu, S. Li, L. Liu, S. Chen, Z. Zhao, W. Yuan, Z.L. Wang, J. Wang: Matter Vol.5 (2022), p.180–93.

Google Scholar

[5] A. Matin Nazar, K.-J. I. Egbe, P. Jiao, and A. H. Alavi: Behavior and Mechanics of Multifunctional Materials XV Vol. 11589 (2021).

DOI: 10.1117/12.2581463

Google Scholar

[6] K.-J. I. Egbe, A. Matin Nazar, P. Jiao, and A. H. Alavi: Active and Passive Smart Structures and Integrated Systems XV Vol. 11588 (2021).

DOI: 10.1117/12.2581669

Google Scholar

[7] Y. Zeng, H. Xiang, N. Zheng, X. Cao, N. Wang, Z.L. Wang: Nano Energy Vol.91 (2022), p.106601.

Google Scholar

[8] A. Matin Nazar, K.-J. I. Egbe, and P. Jiao: Energy Technology, (2022).

Google Scholar

[9] H. Zheng, Y. Zi, X. He, H. Guo, YC. Lai, J. Wang, SL. Zhang, C. Wu, G. Cheng, ZL. Wang: ACS Appl Mater Interfaces Vol.10 (2018), pp.14708-14715.

DOI: 10.1021/acsami.8b01635

Google Scholar

[10] G. Xin, J. Shao, M. Willatzen, Y. Yang, Z.L. Wang: Nano Energy Vol.92 (2022), p.106762.

Google Scholar

[11] J. Ma, J. Zhu, P. Ma, Y. Jie, ZL. Wang, X. Cao: ACS Energy Lett Vol.5 (2020), p.3005–11.

Google Scholar

[12] Y. Guo, XS. Zhang, Y. Wang, W. Gong, Q. Zhang, H. Wang, J. Brugger:Nano Energy Vol.48 (2018), pp.152-160.

Google Scholar

[13] M. Zhu, Q. Shi, T. He, Z. Yi, Y. Ma, B. Yang, T. Chen, C. Lee: ACS Nano Vol.13 (2019), pp.1940-1952.

Google Scholar

[14] B. O. Ayegba, K.-J. I. Egbe, A. M. Nazar, M. Huang, and M. A. Hariri-Ardebili: Energies vol. 15(3), (2022) p.1069.

Google Scholar

[15] P. Jiao, K.-J. I. Egbe, Y. Xie, A. Matin Nazar, and A. H. Alavi: Sensors, Vol. 20(13) (2020) p.3730.

DOI: 10.3390/s20133730

Google Scholar

[16] A. Matin Nazar, P. Jiao, Q. Zhang, K.-J. I. Egbe, and A. H. Alavi: IEEE Instrumentation and Measurement Magazine, Vol. 24(4) (2021), 49–58.

Google Scholar

[17] H.Liu, K.-J. I. Egbe, H. Wang, A. Matin Nazar, P. Jiao, and R. Zhu: Materials Vol. 14(22) (2021), p.6882.

Google Scholar

[18] P. Jiao, Y. Yang, K. I. Egbe, Z. He, and Y. Lin: ACS Omega, Vol 6(23) (2021), pp.15348-15360.

DOI: 10.1021/acsomega.1c01687

Google Scholar

[19] K.-J. I.Egbe: International Journal of Engineering Research and Advanced Technology Vol. 05(02) (2019), p.67–79.

Google Scholar

[20] A. Matin Nazar, K.-J. I. Egbe, P. Jiao, Y. Wang, and Y. Yang: APL Materials Vol. 9(9) (2021), p.091111.

DOI: 10.1063/5.0064300

Google Scholar

[21] P.Jiao, A. Matin Nazar, K.-J. I. Egbe, K. Barri, and A. H. Alavi: Scientific Reports, Vol. 12(1) (2022).

DOI: 10.1038/s41598-021-04100-2

Google Scholar

[22] K.-J. I. Egbe, A. Matin Nazar, P. Jiao, Y. Yang, X. Ye, and H. Wang: Energy Reports Vol. 7 (2021), p.6384–6393.

DOI: 10.1016/j.egyr.2021.09.085

Google Scholar

[23] A. Matin Nazar, K.-J. I. Egbe, A. Abdollahi, and M. A. Hariri-Ardebili: Energies Vol 14(18) (2021). 5600.

DOI: 10.3390/en14185600

Google Scholar

[24] A. Varmaghani, A. Matin Nazar, M. Ahmadi, A. Sharifi, S. Jafarzadeh Ghoushchi, and Y. Pourasad: Wireless Communications and Mobile Computing, (2021), pp.1-14.

DOI: 10.1155/2021/9953416

Google Scholar

[25] Y. Wang, A. Matin Nazar, J. Wang, K. Xia, D. Wang, X. Ji, P. Jiao: Journal of Marine Science and Engineering. Vol. 10(1): (2022), p.5.

Google Scholar

[26] P. Jiao, K.-J. I. Egbe, A. M. Nazar, Y. Yang, and H. Wang: Sustainable Energy Technologies and Assessments Vol. 52 (2022), p.102022.

DOI: 10.1016/j.seta.2022.102022

Google Scholar