[1]
A. Nur Izzah, N. Nasrullah, and B. Sulistyantara, "The Effectivity of Roadside Green Belt in Reducing the Concentration of CO Gas Pollutant," J. Ilmu Pertan. Indones., vol. 24, no. 4, p.337–342, 2019.
DOI: 10.18343/jipi.24.4.337
Google Scholar
[2]
V. Tulus Pangapoi Sidabutar, "Kajian pengembangan kendaraan listrik di Indonesia: prospek dan hambatannya," J. Paradig. Ekon., vol. 15, no. 1, p.21–38, 2020.
DOI: 10.22437/paradigma.v15i1.9217
Google Scholar
[3]
U. H. Kim, E. J. Lee, C. S. Yoon, S. T. Myung, and Y. K. Sun, "Compositionally Graded Cathode Material with Long-Term Cycling Stability for Electric Vehicles Application," Adv. Energy Mater., vol. 6, no. 22, p.1–8, 2016.
DOI: 10.1002/aenm.201601417
Google Scholar
[4]
A. Baczyńska, W. Niewiadomski, A. Gonçalves, P. Almeida, and R. Luís, "LI-NMC batteries model evaluation with experimental data for electric vehicle application," Batteries, vol. 4, no. 1, p.1–16, 2018.
DOI: 10.3390/batteries4010011
Google Scholar
[5]
IGO, "IGO Process: downstream nickel sulphate study update," no. April 2019, p.2, 2019.
Google Scholar
[6]
Pintowantoro, S., Pasha, RAM, Abdul, F., 2021, Gypsum utilization on selective reduction of limonitic laterite nickel, Results in Engineering, 12, 100296
DOI: 10.1016/j.rineng.2021.100296
Google Scholar
[7]
F. Crundwell, M. Moats, T. Robinson, V. Ramachandran, and W. . Davenport, Extractive Metallurgy of Nickel and Cobalt. 2011.
DOI: 10.1016/b978-0-08-096809-4.10012-7
Google Scholar
[8]
R. R. Moskalyk and A. M. Alfantazi, "Nickel laterite processing and electrowinning practice," Miner. Eng., vol. 15, no. 8, p.593–605, 2002.
DOI: 10.1016/S0892-6875(02)00083-3
Google Scholar
[9]
S. Chen, S. Q. Guo, L. Jiang, Y. L. Xu, and W. Z. Ding, "Thermodynamic of selective reduction of laterite ore by reducing gases," Trans. Nonferrous Met. Soc. China (English Ed., vol. 25, no. 9, p.3133–3138, 2015.
DOI: 10.1016/S1003-6326(15)63943-7
Google Scholar
[10]
Widyartha, B., Setiyorini, Y., Abdul, F., Subakti, T. J., & Pintowantoro, S. (2020). Effective beneficiation of low content nickel ferrous laterite using fluxing agent through Na2SO4 selective reduction. Materialwissenschaft und Werkstofftechnik, 51(6), 750-757
DOI: 10.1002/mawe.202000007
Google Scholar
[11]
R. Elliott, C. A. Pickles, and J. Peacey, "Ferronickel particle formation during the carbothermic reduction of a limonitic laterite ore," Miner. Eng., vol. 100, p.166–176, 2017.
DOI: 10.1016/j.mineng.2016.10.020
Google Scholar
[12]
Havlík, T. (2014). Hydrometallurgy: Principles and applications. Elsevier.
Google Scholar
[13]
S. Javanshir, Z. H. Mofrad, and A. Azargoon, "Atmospheric pressure leaching of nickel from a low-grade nickel-bearing ore," Physicochem. Probl. Miner. Process., vol. 54, no. 3, p.890–900, 2018.
Google Scholar
[14]
Z. Zhu, Y. Pranolo, W. Zhang, W. Wang, and C. Y. Cheng, "Precipitation of impurities from synthetic laterite leach solutions," Hydrometallurgy, vol. 104, no. 1, p.81–85, 2010.
DOI: 10.1016/j.hydromet.2010.05.003
Google Scholar
[15]
H. E. Rogers, "A textbook of macro and semimicro qualitative inorganic analysis," Journal of Chemical Education, vol. 33, no. 2. p.98, 1956.
DOI: 10.1021/ed033p98.3
Google Scholar
[16]
Pintowantoro, S., Panggabean, P. C., Setiyorini, Y., & Abdul, F. (2022). Smelting and selective reduction of limonitic laterite ore in mini blast furnace. Journal of The Institution of Engineers (India): Series D, 1-10
DOI: 10.1007/s40033-022-00348-8
Google Scholar
[17]
Abdul, F., Pintowantoro, S., & Maulidani, A. (2020). Analysis the effect of charcoal mass variation to Ni content, sinter strength and yield on sintering process of limonitic laterite nickel ore. In Key Engineering Materials (Vol. 867, pp.25-31). Trans Tech Publications Ltd
DOI: 10.4028/www.scientific.net/KEM.867.25
Google Scholar
[18]
Abdul, F., Suryandaru, H. V., Saputra, N. D., & Pintowantoro, S. (2021, December). The effect of sulfuric acid concentration on the leaching process of crude Fe-Ni obtained from mini blast furnace process. In AIP Conference Proceedings (Vol. 2384, No. 1, p.080003). AIP Publishing LLC
DOI: 10.1063/5.0071478
Google Scholar
[19]
Pintowantoro, S., Waluyo, F. P., Setiyorini, Y., Setyowati, V. A., Kawigraha, A., & Abdul, F. (2021, November). Study of the Effect of Time Variations on the Leaching Process of Ferronickel Products from Mini Blast Furnace to Yield Elements of Fe, Ni, and Co for NiSO4. 6H2O Synthesis. In Journal of Physics: Conference Series (Vol. 2117, No. 1, p.012024). IOP Publishing
DOI: 10.1088/1742-6596/2117/1/012024
Google Scholar
[20]
E. Keskinkilic, "Nickel laterite smelting processes and some examples of recent possible modifications to the conventional route," Metals (Basel)., vol. 9, no. 9, 2019.
DOI: 10.3390/met9090974
Google Scholar
[21]
N. Safitri, M. Z. Mubarok, R. Winarko, and Z. Tanlega, "Recovery of nickel and cobalt as MHP from limonitic ore leaching solution: Kinetics analysis and precipitate characterization," AIP Conf. Proc., vol. 1964, no. May, 2018.
DOI: 10.1063/1.5038312
Google Scholar
[22]
K. C. Wanta et al., "Pengaruh Derajat Keasaman (pH) dalam Proses Presipitasi Hidroksida Selektif Ion Logam dari Larutan Ekstrak Spent Catalyst," J. Rekayasa Proses, vol. 13, no. 2, p.94, 2019, doi: 10.22146/jrekpros.44007 in Bahasa Indonesia
DOI: 10.22146/jrekpros.44007
Google Scholar
[23]
M. Z. Mubarok and J. Lieberto, "Precipitation of Nickel Hydroxide from Simulated and Atmospheric-leach Solution of Nickel Laterite Ore," Procedia Earth Planet. Sci., vol. 6, p.457–464, 2013.
DOI: 10.1016/j.proeps.2013.01.060
Google Scholar
[24]
F. Castro, "Co-precipitation of Nickel and Cobalt during the hydrolitic precipitation of iron in sulphuric solutions," no. July, 2015.
Google Scholar
[25]
T. Apostolovski-Trujić, V. Gardić, and S. Ivanović, "Association of Metallurgical Engineers of Serbia Review paper AMES," Assoc. Metall. Eng. Serbia, vol. 054, no. Lc, p.35–40.
Google Scholar