[1]
D. Syrlybayev, B. Zharylkassyn, A. Seisekulova, M. Akhmetov, A. Perveen, and D. Talamona, "Optimisation of strength properties of FDM printed parts—A critical review," Polymers (Basel)., vol. 13, no. 10, 2021.
DOI: 10.3390/polym13101587
Google Scholar
[2]
Ö. Keleş, C. W. Blevins, and K. J. Bowman, "Effect of build orientation on the mechanical reliability of 3D printed ABS," Rapid Prototyp. J., vol. 23, no. 2, p.320–328, 2017.
DOI: 10.1108/RPJ-09-2015-0122
Google Scholar
[3]
J. Pratama et al., "A review on reinforcement methods for polymeric materials processed using fused filament fabrication (Fff)," Polymers (Basel)., vol. 13, no. 22, p.1–23, 2021.
DOI: 10.3390/polym13224022
Google Scholar
[4]
B. Brenken, E. Barocio, A. Favaloro, V. Kunc, and R. B. Pipes, "Fused filament fabrication of fiber-reinforced polymers: A review," Addit. Manuf., vol. 21, no. February, p.1–16, May 2018.
DOI: 10.1016/j.addma.2018.01.002
Google Scholar
[5]
S. Vyavahare, S. Teraiya, D. Panghal, and S. Kumar, "Fused deposition modelling: a review," Rapid Prototyp. J., vol. 26, no. 1, p.176–201, 2020.
DOI: 10.1108/RPJ-04-2019-0106
Google Scholar
[6]
P. E. Romero, J. Arribas-Barrios, O. Rodriguez-Alabanda, R. González-Merino, and G. Guerrero-Vaca, "Manufacture of polyurethane foam parts for automotive industry using FDM 3D printed molds," CIRP J. Manuf. Sci. Technol., vol. 32, p.396–404, 2021.
DOI: 10.1016/j.cirpj.2021.01.019
Google Scholar
[7]
S. Singh, G. Singh, C. Prakash, and S. Ramakrishna, "Current status and future directions of fused filament fabrication," J. Manuf. Process., vol. 55, no. January, p.288–306, Jul. 2020.
DOI: 10.1016/j.jmapro.2020.04.049
Google Scholar
[8]
A. Cano-Vicent et al., "Fused deposition modelling: Current status, methodology, applications and future prospects," Addit. Manuf., vol. 47, no. August, 2021.
DOI: 10.1016/j.addma.2021.102378
Google Scholar
[9]
A. Uriondo, M. Esperon-Miguez, and S. Perinpanayagam, "The present and future of additive manufacturing in the aerospace sector: A review of important aspects," Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 229, no. 11, p.2132–2147, 2015.
DOI: 10.1177/0954410014568797
Google Scholar
[10]
A. Aydin et al., "3D printing in the battle against COVID-19," Emergent Mater., vol. 4, no. 1, p.363–386, 2021.
DOI: 10.1007/s42247-021-00164-y
Google Scholar
[11]
M. Silva, I. S. Pinho, J. A. Covas, N. M. Alves, and M. C. Paiva, "3D printing of graphene-based polymeric nanocomposites for biomedical applications," Funct. Compos. Mater., vol. 2, no. 1, 2021.
DOI: 10.1186/s42252-021-00020-6
Google Scholar
[12]
M. C. Biswas, "Fused Deposition Modeling 3D Printing Technology in Textile and Fashion Industry: Materials and Innovation," Mod. Concepts Mater. Sci., vol. 2, no. 1, p.1–5, 2019.
DOI: 10.33552/mcms.2019.02.000529
Google Scholar
[13]
C. Esposito Corcione, E. Palumbo, A. Masciullo, F. Montagna, and M. C. Torricelli, "Fused Deposition Modeling (FDM): An innovative technique aimed at reusing Lecce stone waste for industrial design and building applications," Constr. Build. Mater., vol. 158, p.276–284, 2018.
DOI: 10.1016/j.conbuildmat.2017.10.011
Google Scholar
[14]
L. Lendvai, T. Singh, G. Fekete, A. Patnaik, and G. Dogossy, "Utilization of Waste Marble Dust in Poly(Lactic Acid)-Based Biocomposites: Mechanical, Thermal and Wear Properties," J. Polym. Environ., vol. 29, no. 9, p.2952–2963, 2021.
DOI: 10.1007/s10924-021-02091-9
Google Scholar
[15]
K. B. Mustapha and K. M. Metwalli, "A review of fused deposition modelling for 3D printing of smart polymeric materials and composites," Eur. Polym. J., vol. 156, no. February, p.110591, 2021.
DOI: 10.1016/j.eurpolymj.2021.110591
Google Scholar
[16]
D. Han and H. Lee, "Recent advances in multi-material additive manufacturing: methods and applications," Curr. Opin. Chem. Eng., vol. 28, p.158–166, 2020.
DOI: 10.1016/j.coche.2020.03.004
Google Scholar
[17]
L. R. Lopes, A. F. Silva, and O. S. Carneiro, "Multi-material 3D printing: The relevance of materials affinity on the boundary interface performance," Addit. Manuf., vol. 23, no. June, p.45–52, Oct. 2018.
DOI: 10.1016/j.addma.2018.06.027
Google Scholar
[18]
B. Arifvianto, B. E. Satiti, U. A. Salim, Suyitno, A. Nuryanti, and M. Mahardika, "Mechanical properties of the FFF sandwich-structured parts made of PLA/TPU multi-material," Prog. Addit. Manuf., vol. 7, no. 6, p.1213–1223, Dec. 2022.
DOI: 10.1007/s40964-022-00295-6
Google Scholar
[19]
S. Phattarateera and C. Pattamaprom, "Comparative performance of functional rubbers on toughness and thermal property improvement of polylactic acid," Mater. Today Commun., vol. 19, no. August 2018, p.374–382, 2019.
DOI: 10.1016/j.mtcomm.2019.02.012
Google Scholar
[20]
J. Pratama and A. Z. Adib, "Pengaruh Parameter Cetak Pada Nilai Kekerasan Serta Akurasi Dimensi Material Thermoplastic Elastomer ( TPE ) Hasil 3D Printing," J. Ilm. Giga, vol. 25, no. 1, p.35–44, 2022.
DOI: 10.47313/jig.v25i1.1712
Google Scholar
[21]
L. Shenzhen Esun Industrial Co., "PLA+ Technical Data Sheet," Materials Technical Data Sheet, 2021. https://www.esun3d.com/uploads/eSUN_PLA+-Filament_TDS_V4.0.pdf.
Google Scholar
[22]
L. Shenzhen Esun Industrial Co., "eFlex (TPU-87A) Technical Data Sheet," Materials Technical Data Sheet, 2021. https://www.esun3d.com/eflex-tpu-87a-product/.
Google Scholar
[23]
American Society for Testing and Materials, "Standar Tesh Method for Rubber Property—Durometer Hardnes," ASTM Stand., vol. 09.01, p.1–13, 2017.
DOI: 10.1520/D2240-15
Google Scholar
[24]
A. Sandi, M. Mahardika, S. I. Cahyono, U. A. Salim, J. Pratama, and B. Arifvianto, "Pengaruh variasi parameter cetak dan post process terhadap tingkat kekerasan spesimen hasil cetak tiga dimensi berbasis stereolithography (SLA)," Conf. Senat. STT Adisutjipto Yogyakarta, vol. 7, p.33–46, 2022.
DOI: 10.28989/senatik.v7i0.454
Google Scholar