Flame Retardant Additives in Polylactic Acid (PLA) Photopolymer Resin for 3D Printing Digital Light Processing (DLP)

Article Preview

Abstract:

Digital light processing (DLP) technology has been developed based on stereolithography (SLA) 3D-printing principle. The biodegradable and low-cost polylactic-acid (PLA) has so far been used as polymeric material for photopolymer resin in SLA and DLP. To achieve functional SLA-processed product, the properties of such PLA has been improved, with the aim to make it flame retardant, less viscous, and having light transmittance characteristics. In this study, the liquid raw PLA photopolymer was changed by adding different contents of Ammonium Phosphate (APP), melamine cyanurate (MCA), Aluminum Tri-hydroxide (Al2O3) and Nano-silicon dioxide (SiO2) additives. The solid PLA nanocomposite specimens were printed by using DLP device according to the standard geometry for burning test UL-94 to evaluate its flame-retardant property. In addition, the printing product and residue after burning test was analyzed for their morphological characteristic by using SEM. The results showed that the low weight fraction of MCA showed excellent performance. PLA/MCA successfully kept green body form until the sintering temperature of stainless steel was achieved. It can become a reference for application DLP 3D printing products in the casting and sintering process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-59

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Shojaeiarani, D.S. Bajwa, C. Rehovsky, S.G. Bajwa, G. Vahidi, Deterioration in the physico-mechanical and thermal properties of biopolymers due to reprocessing, Polymers (Basel). 11 (2019) 1–17.

DOI: 10.3390/polym11010058

Google Scholar

[2] G. Vahidi, D.S. Bajwa, J. Shojaeiarani, N. Stark, A. Darabi, Advancements in traditional and nanosized flame retardants for polymers—A review, J. Appl. Polym. Sci. 138 (2021) 1–14.

DOI: 10.1002/app.50050

Google Scholar

[3] R.C. Martins, S.P. da S. Ribeiro, M.J.C. Rezende, R.S.V. Nascimento, M.A.C. Nascimento, M. Batistella, J.M. Lopez-Cuesta, Flame-Retarding Properties of Injected and 3D-Printed Intumescent Bio-Based PLA Composites: The Influence of Brønsted and Lewis Acidity of Montmorillonite, Polymers (Basel). 14 (2022).

DOI: 10.3390/polym14091702

Google Scholar

[4] S. Zakeri, M. Vippola, E. Levänen, A comprehensive review of the photopolymerization of ceramic resins used in stereolithography, Addit. Manuf. 35 (2020) 101177.

DOI: 10.1016/j.addma.2020.101177

Google Scholar

[5] B. Thavornyutikarn, P. Tesavibul, K. Sitthiseripratip, N. Chatarapanich, B. Feltis, P.F.A. Wright, T.W. Turney, Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds, Elsevier B.V, 2017.

DOI: 10.1016/j.msec.2017.03.001

Google Scholar

[6] Y.F. Lv, W. Thomas, R. Chalk, S. Singamneni, Flame retardant polymeric materials for additive manufacturing, Mater. Today Proc. 33 (2020) 5720–5724.

DOI: 10.1016/j.matpr.2020.05.081

Google Scholar

[7] Q. Sun, Y. Ding, S.I. Stoliarov, J. Sun, G. Fontaine, S. Bourbigot, Development of a pyrolysis model for an intumescent flame retardant system: Poly(lactic acid) blended with melamine and ammonium polyphosphate, Compos. Part B Eng. 194 (2020).

DOI: 10.1016/j.compositesb.2020.108055

Google Scholar

[8] S. Duquesne, S. Magnet, C. Jama, R. Delobel, Intumescent paints: Fire protective coatings for metallic substrates, Surf. Coatings Technol. 180–181 (2004) 302–307.

DOI: 10.1016/j.surfcoat.2003.10.075

Google Scholar

[9] A. Yasemin, M. Doğan, E. Bayramlı, The effect of red phosphorus on the fire properties of intumescent pine wood flour – LDPE composites Yasemin, Finnish-Swedish Flame Days 2009. (2009) 4B.

DOI: 10.1002/fam.2336

Google Scholar

[10] O. Santoliquido, P. Colombo, A. Ortona, Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the "bottom-up" and the "top-down" approaches, J. Eur. Ceram. Soc. 39 (2019) 2140–2148. https://doi.org/10.1016/j.jeurceramsoc. 2019.01.044.

DOI: 10.1016/j.jeurceramsoc.2019.01.044

Google Scholar

[11] X. Wu, Q. Lian, D. Li, Z. Jin, Tilting separation analysis of bottom-up mask projection stereolithography based on cohesive zone model, J. Mater. Process. Technol. 243 (2017) 184–196.

DOI: 10.1016/j.jmatprotec.2016.12.016

Google Scholar

[12] F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, P. Dubois, New prospects in flame retardant polymer materials: From fundamentals to nanocomposites, Mater. Sci. Eng. R Reports. 63 (2009) 100–125.

DOI: 10.1016/j.mser.2008.09.002

Google Scholar

[13] W. Xi, L. Qian, L. Li, Flame retardant behavior of ternary synergistic systems in rigid polyurethane foams, Polymers (Basel). 11 (2019).

DOI: 10.3390/polym11020207

Google Scholar

[14] W.P. Fahy, H. Wu, J.H. Koo, S. Kim, H. Kim, Flame retardant polyamide 11 and alumina nanocomposites for additive manufacturing, Int. SAMPE Tech. Conf. 2018-May (2018).

DOI: 10.33599/nasampe/s.19.1573

Google Scholar

[15] A. Regazzi, M.F. Pucci, L. Dumazert, S. Buonomo, B. Gallard, R. Ravel, J.M. Lopez Cuesta, Development of flame-retarded PLA compositions by 3D printing of core-skin structures, ECCM 2018 - 18th Eur. Conf. Compos. Mater. (2020).

Google Scholar

[16] H. Vahabi, F. Laoutid, M. Mehrpouya, M.R. Saeb, P. Dubois, Flame retardant polymer materials: An update and the future for 3D printing developments, Mater. Sci. Eng. R Reports. 144 (2021) 100604.

DOI: 10.1016/j.mser.2020.100604

Google Scholar

[17] Y. Xue, X. Zuo, L. Wang, Y. Zhou, Y. Pan, J. Li, Y. Yin, D. Li, R. Yang, M.H. Rafailovich, Y. Guo, Enhanced flame retardancy of poly(lactic acid) with ultra-low loading of ammonium polyphosphate, Compos. Part B Eng. 196 (2020) 108124.

DOI: 10.1016/j.compositesb.2020.108124

Google Scholar

[18] H. Nabipour, X. Wang, L. Song, Y. Hu, Metal-organic frameworks for flame retardant polymers application : A critical review, Compos. Part A. 139 (2020) 106113.

DOI: 10.1016/j.compositesa.2020.106113

Google Scholar

[19] X. Chen, C. Jiao, Flame retardancy and thermal degradation of intumescent flame retardant polypropylene material, Polym. Adv. Technol. 22 (2011) 817–821.

DOI: 10.1002/pat.1583

Google Scholar

[20] P. Cai, L. Guo, H. Wang, J. Li, J. Li, Y. Qiu, Q. Zhang, Q. Lue, Effects of slurry mixing methods and solid loading on 3D printed silica glass parts based on DLP stereolithography, Ceram. Int. 46 (2020) 16833–16841.

DOI: 10.1016/j.ceramint.2020.03.260

Google Scholar

[21] A. Almubarak, W. Abuhaimed, A. Almazrouee, Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater, Int. J. Electrochem. 2013 (2013) 1–7.

DOI: 10.1155/2013/970835

Google Scholar