[1]
J. Shojaeiarani, D.S. Bajwa, C. Rehovsky, S.G. Bajwa, G. Vahidi, Deterioration in the physico-mechanical and thermal properties of biopolymers due to reprocessing, Polymers (Basel). 11 (2019) 1–17.
DOI: 10.3390/polym11010058
Google Scholar
[2]
G. Vahidi, D.S. Bajwa, J. Shojaeiarani, N. Stark, A. Darabi, Advancements in traditional and nanosized flame retardants for polymers—A review, J. Appl. Polym. Sci. 138 (2021) 1–14.
DOI: 10.1002/app.50050
Google Scholar
[3]
R.C. Martins, S.P. da S. Ribeiro, M.J.C. Rezende, R.S.V. Nascimento, M.A.C. Nascimento, M. Batistella, J.M. Lopez-Cuesta, Flame-Retarding Properties of Injected and 3D-Printed Intumescent Bio-Based PLA Composites: The Influence of Brønsted and Lewis Acidity of Montmorillonite, Polymers (Basel). 14 (2022).
DOI: 10.3390/polym14091702
Google Scholar
[4]
S. Zakeri, M. Vippola, E. Levänen, A comprehensive review of the photopolymerization of ceramic resins used in stereolithography, Addit. Manuf. 35 (2020) 101177.
DOI: 10.1016/j.addma.2020.101177
Google Scholar
[5]
B. Thavornyutikarn, P. Tesavibul, K. Sitthiseripratip, N. Chatarapanich, B. Feltis, P.F.A. Wright, T.W. Turney, Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds, Elsevier B.V, 2017.
DOI: 10.1016/j.msec.2017.03.001
Google Scholar
[6]
Y.F. Lv, W. Thomas, R. Chalk, S. Singamneni, Flame retardant polymeric materials for additive manufacturing, Mater. Today Proc. 33 (2020) 5720–5724.
DOI: 10.1016/j.matpr.2020.05.081
Google Scholar
[7]
Q. Sun, Y. Ding, S.I. Stoliarov, J. Sun, G. Fontaine, S. Bourbigot, Development of a pyrolysis model for an intumescent flame retardant system: Poly(lactic acid) blended with melamine and ammonium polyphosphate, Compos. Part B Eng. 194 (2020).
DOI: 10.1016/j.compositesb.2020.108055
Google Scholar
[8]
S. Duquesne, S. Magnet, C. Jama, R. Delobel, Intumescent paints: Fire protective coatings for metallic substrates, Surf. Coatings Technol. 180–181 (2004) 302–307.
DOI: 10.1016/j.surfcoat.2003.10.075
Google Scholar
[9]
A. Yasemin, M. Doğan, E. Bayramlı, The effect of red phosphorus on the fire properties of intumescent pine wood flour – LDPE composites Yasemin, Finnish-Swedish Flame Days 2009. (2009) 4B.
DOI: 10.1002/fam.2336
Google Scholar
[10]
O. Santoliquido, P. Colombo, A. Ortona, Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the "bottom-up" and the "top-down" approaches, J. Eur. Ceram. Soc. 39 (2019) 2140–2148. https://doi.org/10.1016/j.jeurceramsoc. 2019.01.044.
DOI: 10.1016/j.jeurceramsoc.2019.01.044
Google Scholar
[11]
X. Wu, Q. Lian, D. Li, Z. Jin, Tilting separation analysis of bottom-up mask projection stereolithography based on cohesive zone model, J. Mater. Process. Technol. 243 (2017) 184–196.
DOI: 10.1016/j.jmatprotec.2016.12.016
Google Scholar
[12]
F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, P. Dubois, New prospects in flame retardant polymer materials: From fundamentals to nanocomposites, Mater. Sci. Eng. R Reports. 63 (2009) 100–125.
DOI: 10.1016/j.mser.2008.09.002
Google Scholar
[13]
W. Xi, L. Qian, L. Li, Flame retardant behavior of ternary synergistic systems in rigid polyurethane foams, Polymers (Basel). 11 (2019).
DOI: 10.3390/polym11020207
Google Scholar
[14]
W.P. Fahy, H. Wu, J.H. Koo, S. Kim, H. Kim, Flame retardant polyamide 11 and alumina nanocomposites for additive manufacturing, Int. SAMPE Tech. Conf. 2018-May (2018).
DOI: 10.33599/nasampe/s.19.1573
Google Scholar
[15]
A. Regazzi, M.F. Pucci, L. Dumazert, S. Buonomo, B. Gallard, R. Ravel, J.M. Lopez Cuesta, Development of flame-retarded PLA compositions by 3D printing of core-skin structures, ECCM 2018 - 18th Eur. Conf. Compos. Mater. (2020).
Google Scholar
[16]
H. Vahabi, F. Laoutid, M. Mehrpouya, M.R. Saeb, P. Dubois, Flame retardant polymer materials: An update and the future for 3D printing developments, Mater. Sci. Eng. R Reports. 144 (2021) 100604.
DOI: 10.1016/j.mser.2020.100604
Google Scholar
[17]
Y. Xue, X. Zuo, L. Wang, Y. Zhou, Y. Pan, J. Li, Y. Yin, D. Li, R. Yang, M.H. Rafailovich, Y. Guo, Enhanced flame retardancy of poly(lactic acid) with ultra-low loading of ammonium polyphosphate, Compos. Part B Eng. 196 (2020) 108124.
DOI: 10.1016/j.compositesb.2020.108124
Google Scholar
[18]
H. Nabipour, X. Wang, L. Song, Y. Hu, Metal-organic frameworks for flame retardant polymers application : A critical review, Compos. Part A. 139 (2020) 106113.
DOI: 10.1016/j.compositesa.2020.106113
Google Scholar
[19]
X. Chen, C. Jiao, Flame retardancy and thermal degradation of intumescent flame retardant polypropylene material, Polym. Adv. Technol. 22 (2011) 817–821.
DOI: 10.1002/pat.1583
Google Scholar
[20]
P. Cai, L. Guo, H. Wang, J. Li, J. Li, Y. Qiu, Q. Zhang, Q. Lue, Effects of slurry mixing methods and solid loading on 3D printed silica glass parts based on DLP stereolithography, Ceram. Int. 46 (2020) 16833–16841.
DOI: 10.1016/j.ceramint.2020.03.260
Google Scholar
[21]
A. Almubarak, W. Abuhaimed, A. Almazrouee, Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater, Int. J. Electrochem. 2013 (2013) 1–7.
DOI: 10.1155/2013/970835
Google Scholar