[1]
Q. Sun, G.M. Rizvi, C.T. Bellehumeur, P. Gu, Effect of processing conditions on the bonding quality of FDM polymer filaments, Rapid Prototyp. J. 14 (2008) 72–80.
DOI: 10.1108/13552540810862028
Google Scholar
[2]
B. Arifvianto, T.N. Iman, B.T. Prayoga, R. Dharmastiti, U.A. Salim, M. Mahardika, Suyitno, Tensile properties of the FFF-processed thermoplastic polyurethane (TPU) elastomer, Int. J. Adv. Manuf. Technol. 117 (2021) 1709–1719.
DOI: 10.1007/s00170-021-07712-0
Google Scholar
[3]
S.. Masood, W. Song, Development of new metal/polymer materials for rapid tooling using Fused deposition modelling, Mater. Des. 25 (2004) 587–594. https://doi.org/10.1016/j.matdes. 2004.02.009.
DOI: 10.1016/j.matdes.2004.02.009
Google Scholar
[4]
H. Jami, S.H. Masood, W.Q. Song, Dynamic Response of FDM Made ABS Parts in Different Part Orientations, Adv. Mater. Res. 748 (2013) 291–294.
DOI: 10.4028/www.scientific.net/AMR.748.291
Google Scholar
[5]
E. Çantı, M. Aydın, Effects of micro particle reinforcement on mechanical properties of 3D printed parts, Rapid Prototyp. J. 24 (2018) 171-176.
DOI: 10.1108/RPJ-06-2016-0095
Google Scholar
[6]
A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Parametric appraisal of mechanical property of fused deposition modelling processed parts, Mater. Des. 31 (2010) 287–295.
DOI: 10.1016/j.matdes.2009.06.016
Google Scholar
[7]
B. Huang, S.H. Masood, M. Nikzad, P.R. Venugopal, A. Arivazhagan, Dynamic Mechanical Properties of Fused Deposition Modelling Processed Polyphenylsulfone Material, Am. J. Eng. Appl. Sci. 9 (2016) 1–11.
DOI: 10.3844/ajeassp.2016.1.11
Google Scholar
[8]
I. Durgun, R. Ertan, Experimental investigation of FDM process for improvement of mechanical properties and production cost, Rapid Prototyp. J. 20 (2014) 228–235.
DOI: 10.1108/RPJ-10-2012-0091
Google Scholar
[9]
L. Cheng, P. Zhang, E. Biyikli, J. Bai, J. Robbins, A. To, Efficient design optimization of variable-density cellular structures for additive manufacturing: theory and experimental validation, Rapid Prototyp. J. 23 (2017) 660–677.
DOI: 10.1108/RPJ-04-2016-0069
Google Scholar
[10]
B. Arifvianto, Y.B. Wirawan, U.A. Salim, S. Suyitno, M. Mahardika, Effects of extruder temperatures and raster orientations on mechanical properties of the FFF-processed polylactic-acid (PLA) material, Rapid Prototyp. J. 27 (2021) 1761–1775.
DOI: 10.1108/RPJ-10-2019-0270
Google Scholar
[11]
S. Dul, L. Fambri, A. Pegoretti, Fused deposition modelling with ABS-graphene nanocomposites, Compos. Part A Appl. Sci. Manuf. 85 (2016) 181–191.
DOI: 10.1016/j.compositesa.2016.03.013
Google Scholar
[12]
J.B. Jones, D.I. Wimpenny, G.J. Gibbons, Additive manufacturing under pressure, Rapid Prototyp. J. 21 (2015) 89–97.
DOI: 10.1108/RPJ-02-2013-0016
Google Scholar
[13]
H.L. Tekinalp, V. Kunc, G.M. Velez-Garcia, C.E. Duty, L.J. Love, A.K. Naskar, C.A. Blue, S. Ozcan, Highly oriented carbon fiber–polymer composites via additive manufacturing, Compos. Sci. Technol. 105 (2014)144–150. https://doi.org/10.1016/j.compscitech. 2014.10.009.
DOI: 10.1016/j.compscitech.2014.10.009
Google Scholar
[14]
S. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyp. J. 8 (2002) 248–257. https://doi.org/10.1108/ 13552540210441166.
DOI: 10.1108/13552540210441166
Google Scholar
[15]
M. Ivey, G.W. Melenka, J.P. Carey, C. Ayranci, Characterizing short-fiber-reinforced composites produced using additive manufacturing, Adv. Manuf. Polym. Compos. Sci. 3 (2017) 81–91.
DOI: 10.1080/20550340.2017.1341125
Google Scholar
[16]
F. Ning, W. Cong, J. Qiu, J. Wei, S. Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Compos. Part B Eng. 80 (2015) 369–378.
DOI: 10.1016/j.compositesb.2015.06.013
Google Scholar
[17]
J. Pratama, S.I. Cahyono, S. Suyitno, M.A. Muflikhun, U.A. Salim, M. Mahardika, B. Arifvianto, A Review on Reinforcement Methods for Polymeric Materials Processed Using Fused Filament Fabrication (FFF), Polymers (Basel). 13 (2021) 4022.
DOI: 10.3390/polym13224022
Google Scholar
[18]
M. Nikzad, S.H. Masood, I. Sbarski, Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling, Mater. Des. 32 (2011) 3448–3456.
DOI: 10.1016/j.matdes.2011.01.056
Google Scholar
[19]
M.A. Osman, M.R.A. Atia, Investigation of ABS-rice straw composite feedstock filament for FDM, Rapid Prototyp. J. 24 (2018) 1067–1075.
DOI: 10.1108/RPJ-11-2017-0242
Google Scholar
[20]
J.V. Ecker, A. Haider, I. Burzic, A. Huber, G. Eder, S. Hild, Mechanical properties and water absorption behaviour of PLA and PLA/wood composites prepared by 3D printing and injection moulding, Rapid Prototyp. J. 25 (2019) 672–678.
DOI: 10.1108/RPJ-06-2018-0149
Google Scholar
[21]
J.S. Walker, J. Arnold, C. Shrestha, D. Smith, Antibacterial silver submicron wire-polylactic acid composites for fused filament fabrication, Rapid Prototyp. J. 26 (2020) 32–38.
DOI: 10.1108/RPJ-04-2019-0100
Google Scholar
[22]
N. Gamze Karsli, T. Yilmaz, A. Aytac, G. Ozkoc, Investigation of erosive wear behavior and physical properties of SGF and/or calcite reinforced ABS/PA6 composites, Compos. Part B Eng. 44 (2013) 385–393.
DOI: 10.1016/j.compositesb.2012.04.074
Google Scholar
[23]
A.R. Torrado Perez, D.A. Roberson, R.B. Wicker, Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials, J. Fail. Anal. Prev. 14 (2014) 343–353.
DOI: 10.1007/s11668-014-9803-9
Google Scholar
[24]
Z. Weng, J. Wang, T. Senthil, L. Wu, Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing, Mater. Des. 102 (2016) 276–283.
DOI: 10.1016/j.matdes.2016.04.045
Google Scholar
[25]
H.K. Sezer, O. Eren, FDM 3D printing of MWCNT re-inforced ABS nano-composite parts with enhanced mechanical and electrical properties, J. Manuf. Process. 37 (2019) 339–347.
DOI: 10.1016/j.jmapro.2018.12.004
Google Scholar
[26]
T. Beran, T. Mulholland, F. Henning, N. Rudolph, T.A. Osswald, Nozzle clogging factors during fused filament fabrication of spherical particle filled polymers, Addit. Manuf. 23 (2018) 206–214.
DOI: 10.1016/j.addma.2018.08.009
Google Scholar
[27]
American Society for Testing and Materials, ASTM D638-14, Standard Practice for Preparation of Metallographic Specimens, ASTM Int. 82 (2016) 1–15.
Google Scholar
[28]
I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies, Springer New York, New York, NY, 2015.
DOI: 10.1007/978-1-4939-2113-3
Google Scholar