[1]
D. Bhate, C.A. Penick, L.A. Ferry, C. Lee, Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches, Designs 3(1) (2019) 19.
DOI: 10.3390/designs3010019
Google Scholar
[2]
R.W. Corkery, E.C. Tyrode, On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals, Interface Focus 7(4) (2017) 20160154.
DOI: 10.1098/rsfs.2016.0154
Google Scholar
[3]
D. Sharma, S.S. Hiremath, Bio-inspired repeatable lattice structures for energy absorption: Experimental and finite element study, Composite Structures 283 (2022) 115102.
DOI: 10.1016/j.compstruct.2021.115102
Google Scholar
[4]
Z. Wang, Recent advances in novel metallic honeycomb structure, Composites Part B: Engineering 166 (2019) 731-41.
DOI: 10.1016/j.compositesb.2019.02.011
Google Scholar
[5]
A. du Plessis, N. Razavi, M. Benedetti, S. Murchio, M. Leary, M. Watson, D. Bhate, F. Berto, Properties and applications of additively manufactured metallic cellular materials: A review, Progress in Materials Science 125 (2022) 100918.
DOI: 10.1016/j.pmatsci.2021.100918
Google Scholar
[6]
M.G. Gado, O. Al-Ketan, M. Aziz, R.A. Al-Rub, S. Ookawara, Triply Periodic Minimal Surface Structures: Design, Fabrication, 3D Printing Techniques, State-of-the-Art Studies, and Prospective Thermal Applications for Efficient Energy Utilization, Energy Technology 12(5) (2024) 2301287.
DOI: 10.1002/ente.202301287
Google Scholar
[7]
B. Leng, D. Ruan, K.M. Tse, Recent bicycle helmet designs and directions for future research: A comprehensive review from material and structural mechanics aspects, International Journal of Impact Engineering 168 (2022) 104317.
DOI: 10.1016/j.ijimpeng.2022.104317
Google Scholar
[8]
E. Dereli, J. Mbendou Ii, V. Patel, C. Mittelstedt, Analytical and numerical analysis of composite sandwich structures with additively manufactured lattice cores, Composites Part C: Open Access 14 (2024) 100484.
DOI: 10.1016/j.jcomc.2024.100484
Google Scholar
[9]
N. Khan, A. Riccio, A systematic review of design for additive manufacturing of aerospace lattice structures: Current trends and future directions, Progress in Aerospace Sciences 149 (2024) 101021.
DOI: 10.1016/j.paerosci.2024.101021
Google Scholar
[10]
X. Cao, B. Ji, Y. Li, X. An, H. Fan, L. Ke, Multi-failure analyses of additively manufactured lattice truss sandwich cylinders, Composites Part B: Engineering 207 (2021) 108561.
DOI: 10.1016/j.compositesb.2020.108561
Google Scholar
[11]
J. Feng, J. Fu, X. Yao, Y. He, Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications, International Journal of Extreme Manufacturing 4(2) (2022) 022001.
DOI: 10.1088/2631-7990/ac5be6
Google Scholar
[12]
O. Al-Ketan, R.K. Abu Al-Rub, Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices, Advanced Engineering Materials 21(10) (2019) 1900524.
DOI: 10.1002/adem.201900524
Google Scholar
[13]
A. Schoen, Infinite Periodic Minimal Surfaces without Self-intersections, National Aeronautics and Space Administration, 1970.
Google Scholar
[14]
A. Álvarez-Trejo, E. Cuan-Urquizo, D. Bhate, A. Roman-Flores, Mechanical metamaterials with topologies based on curved elements: An overview of design, additive manufacturing and mechanical properties, Materials & Design 233 (2023) 112190.
DOI: 10.1016/j.matdes.2023.112190
Google Scholar
[15]
S. Hussain, A.N. Alagha, G.N. Haidemenopoulos, W. Zaki, Microstructural and surface analysis of NiTi TPMS lattice sections fabricated by laser powder bed fusion, Journal of Manufacturing Processes 102 (2023) 375-86.
DOI: 10.1016/j.jmapro.2023.07.055
Google Scholar
[16]
N. Novak, S. Tanaka, K. Hokamoto, A. Mauko, Y.E. Yilmaz, O. Al-Ketan, M. Vesenjak, Z. Ren, High strain rate mechanical behaviour of uniform and hybrid metallic TPMS cellular structures, Thin-Walled Structures 191 (2023) 111109.
DOI: 10.1016/j.tws.2023.111109
Google Scholar
[17]
X. Guo, E. Wang, H. Yang, W. Zhai, Mechanical characterization and constitutive modeling of additively-manufactured polymeric materials and lattice structures, Journal of the Mechanics and Physics of Solids 189 (2024) 105711.
DOI: 10.1016/j.jmps.2024.105711
Google Scholar
[18]
J. Peloquin, Y. Han, K. Gall, Printability and mechanical behavior as a function of base material, structure, and a wide range of porosities for polymer lattice structures fabricated by vat-based 3D printing, Additive Manufacturing 78 (2023) 103892.
DOI: 10.1016/j.addma.2023.103892
Google Scholar
[19]
T. Maconachie, R. Tino, B. Lozanovski, M. Watson, A. Jones, C. Pandelidi, A. Alghamdi, A. Almalki, D. Downing, M. Brandt, M. Leary, The compressive behaviour of ABS gyroid lattice structures manufactured by fused deposition modelling, The International Journal of Advanced Manufacturing Technology 107(11) (2020) 4449-67.
DOI: 10.1007/s00170-020-05239-4
Google Scholar
[20]
A. Nazir, K.M. Abate, A. Kumar, J.-Y. Jeng, A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures, The International Journal of Advanced Manufacturing Technology 104(9) (2019) 3489-510.
DOI: 10.1007/s00170-019-04085-3
Google Scholar
[21]
M. Araya, J. Murillo, R. Vindas, T. Guillén, Compressive behavior of SLA open-cell lattices: A comparison between triply periodic minimal surface gyroid and stochastic structures for artificial bone, Materialia 38 (2024) 102233.
DOI: 10.1016/j.mtla.2024.102233
Google Scholar
[22]
W. Harmatys, D. Owczarek, K. Kobiela, A. Jarocha, Assessment of the accuracy of standards manufactured by SLA additive technology, Measurement: Sensors (2025) 101661.
DOI: 10.1016/j.measen.2024.101661
Google Scholar
[23]
D. Miedzińska, R. Gieleta, E. Małek, Experimental study of strength properties of SLA resins under low and high strain rates, Mechanics of Materials 141 (2020) 103245.
DOI: 10.1016/j.mechmat.2019.103245
Google Scholar
[24]
S. Yu, J. Sun, J. Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Materials & Design 182 (2019) 108021.
DOI: 10.1016/j.matdes.2019.108021
Google Scholar