Compatibility of NiO-SDC and NiO-Fe Anodes with Samarium-Doped Ceria Carbonate (SDCC) Electrolyte Intermediate-Temperature Solid Oxide Fuel Cells

Article Preview

Abstract:

Samarium-doped ceria carbonate (SDCC) is a potential electrolyte material for solid oxide fuel cells (SOFCs). It has exhibited high ionic conductivity while operating at intermediate and low temperatures. In this research, symmetrical cells supported by SDCC electrolyte consisting of NiO–SDC and NiO–Fe anodes were fabricated by using the dry-pressing and slurry-coating techniques. The cross-sectional morphology of the symmetrical cells was analyzed via field-emission scanning electron microscopy. Electrochemical impedance spectroscopy was used to test the electrochemical performance of the cells. The results of electrochemical performance test showed that both symmetrical cells exhibited low area surface resistance (ASR) at 600 °C. The ASR of the Ni–Fe/SDCC/Ni–Fe symmetrical cell was 1.05 Ω·cm2, lower than that of the Ni–SDC/SDCC/Ni–SDC cell (20.30 Ω·cm2). Overall, this study proved that Ni–Fe alloy can be used in combination with SDCC electrolyte for intermediate-temperature SOFC applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-126

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. N. J. AlAwad, "Remarks on the world's current energy supply and demand," Journal of King Saud University - Engineering Sciences, vol. 34, (2022) 351.

DOI: 10.1016/j.jksues.2022.09.001

Google Scholar

[2] O. Ellabban, H. Abu-Rub, and F. Blaabjerg, "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, vol. 39, (2014) 748-764.

DOI: 10.1016/j.rser.2014.07.113

Google Scholar

[3] T. Elmer, M. Worall, S. Wu, and S. B. Riffat, "Fuel cell technology for domestic built environment applications: State of-the-art review," Renewable and Sustainable Energy Reviews, vol. 42, (2015) 913-931.

DOI: 10.1016/j.rser.2014.10.080

Google Scholar

[4] A. H. Alaedini, H. K. Tourani, and M. Saidi, "A review of waste-to-hydrogen conversion technologies for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development," Journal of Environmental Management, vol. 329, (2023) 117077.

DOI: 10.1016/j.jenvman.2022.117077

Google Scholar

[5] N. Aprianti, M. Faizal, M. Said, and S. Nasir, "Sorption-enhanced steam gasification of fine coal waste for fuel producing," Journal of King Saud University - Engineering Sciences, (2022).

DOI: 10.1016/j.jksues.2022.08.003

Google Scholar

[6] S. A. Saadabadi, A. Thallam Thattai, L. Fan, R. E. F. Lindeboom, H. Spanjers, and P. V. Aravind, "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, vol. 134, (2019) 194-214.

DOI: 10.1016/j.renene.2018.11.028

Google Scholar

[7] Y. Wu, J. Sang, Z. Liu, H. Fan, B. Cao, Q. Wang, et al., "Enhancing the performance and stability of solid oxide fuel cells by adopting samarium-doped ceria buffer layer," Ceramics International, vol. 49, (2023) 20290-20297.

DOI: 10.1016/j.ceramint.2023.03.152

Google Scholar

[8] N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, "Progress in material selection for solid oxide fuel cell technology: A review," Progress in Materials Science, vol. 72, (2015) 141-337.

DOI: 10.1016/j.pmatsci.2015.01.001

Google Scholar

[9] N. H. Hadi, M. R. Somalu, A. A. Samat, A. Muchtar, N. A. Baharuddin, and M. Anwar, "A review on the preparation of anode materials and anode films for solid oxide fuel cell applications," International Journal of Energy Research, vol. 45, (2021) 14357-14388.

DOI: 10.1002/er.6763

Google Scholar

[10] S. Hussain and L. Yangping, "Review of solid oxide fuel cell materials: cathode, anode, and electrolyte," Energy Transitions, vol. 4, (2020) 113-126.

DOI: 10.1007/s41825-020-00029-8

Google Scholar

[11] D. Hart, F. Lehner, S. Jones, J. Lewis, and M. Klippenstein. (2018, The Fuel Cell Industry Review 2018.

Google Scholar

[12] M. Irshad, K. Siraj, R. Raza, A. Ali, P. Tiwari, B. Zhu, et al., "A brief description of high temperature solid oxide fuel cell's operation, materials, design, fabrication technologies and performance," Applied Sciences, vol. 6, (2016) 1-23.

DOI: 10.3390/app6030075

Google Scholar

[13] M. Rafique, H. Nawaz, M. Shahid Rafique, M. Bilal Tahir, G. Nabi, and N. Khalid, "Material and method selection for efficient solid oxide fuel cell anode: Recent advancements and reviews," International Journal of Energy Research, vol. 43, (2018) 2423-2446.

DOI: 10.1002/er.4210

Google Scholar

[14] N. Sazali, W. N. Wan Salleh, A. S. Jamaludin, and M. N. Mhd Razali, "New perspectives on fuel cell technology: A brief review," Membranes, vol. 10, (2020) 99.

DOI: 10.3390/membranes10050099

Google Scholar

[15] Y. Lu, Y. Liu, M. Yousaf, M. A. K. Y. Shah, S. Yan, and C. Lu, "Efficient ion conductivity enhancement mechanism induced by metal ion diffusion of SOFCs based on Fe-doped Gd2O3 electrolyte," Electrochimica Acta, vol. 458, (2023) 142481.

DOI: 10.1016/j.electacta.2023.142481

Google Scholar

[16] D. Aboelela and M. A. Soliman, "Hydrogen production from microbial electrolysis cells powered with microbial fuel cells," Journal of King Saud University - Engineering Sciences, (2022).

DOI: 10.1016/j.jksues.2022.05.008

Google Scholar

[17] M. Anwar, M. A. SA, N. A. Baharuddin, N. F. Raduwan, A. Muchtar, and M. R. Somalu, "Structural, optical and electrical properties of Ce0. 8Sm0. 2-xErxO2-δ (x=0-0.2) Co-doped ceria electrolytes," Ceramics International, vol. 44, (2018) 13639-13648.

DOI: 10.1016/j.ceramint.2018.04.200

Google Scholar

[18] H. Ding, D. Qu, H. Sun, X. Guo, J. Li, Q. Li, et al., "Improved sintering behavior and electrical performance of Ce0.8Sm0.2O2-δ-BaZr0.1Ce0.7Y0.2 O3-δ (SDC -BZCY) composite electrolytes with the addition of iron (III) oxide for IT-SOFCs," Ceramics International, vol. 45, (2019) 24702-24706.

DOI: 10.1016/j.ceramint.2019.08.209

Google Scholar

[19] E. G. Kalinina, D. S. Rusakova, K. S. Shubin, L. V. Ermakova, and E. Y. Pikalova, "CeO2-based thin-film electrolyte membranes for intermediate temperature SOFCs: Direct electrophoretic deposition on the supporting anode from additive-modified suspensions," International Journal of Hydrogen Energy, (2023).

DOI: 10.1016/j.ijhydene.2023.01.159

Google Scholar

[20] P. Zhu, Z. Wu, H. Wang, H. Yan, B. Li, F. Yang, et al., "Ni coarsening and performance attenuation prediction of biomass syngas fueled SOFC by combining multi-physics field modeling and artificial neural network," Applied Energy, vol. 322, (2022) 119508.

DOI: 10.1016/j.apenergy.2022.119508

Google Scholar

[21] T. Gan, H. Song, X. Fan, Y. Liu, S. Liu, Y. Zhao, et al., "A rational design of highly active and coke-resistant anode for methanol-fueled solid oxide fuel cells with Sn doped Ni-Ce0.8Sm0.2O2−δ," Chemical Engineering Journal, vol. 455, (2023) 140692.

DOI: 10.1016/j.cej.2022.140692

Google Scholar

[22] N. Jaiswal, K. Tanwar, R. Suman, D. Kumar, S. Uppadhya, and O. Parkash, "A brief review on ceria based solid electrolytes for solid oxide fuel cells," Journal of Alloys and Compounds, vol. 781, (2018) 984-1005.

DOI: 10.1016/j.jallcom.2018.12.015

Google Scholar

[23] H. Wang, X. Liu, H. Bi, S. Yu, F. Han, J. Sun, et al., "Effects of NiO on the conductivity of Ce0.85 Sm0.15 O1.925 and on electrochemical properties of the cathode/electrolyte interface," Journal of Power Sources, vol. 320, (2016) 86-93.

DOI: 10.1016/j.jpowsour.2016.04.074

Google Scholar

[24] S. P. Patil, L. D. Jadhav, and M. Chourashiya, "Investigation of quality and performance of Cu impregnated NiO-GDC as anode for IT-SOFCs," Open Ceramics, vol. 9, (2022) 100230.

DOI: 10.1016/j.oceram.2022.100230

Google Scholar

[25] S. K. Rout and S. K. Pratihar, "Tailoring of properties in the preparation level of nano crystalline Ce0.8Sm0.2O1.9-δ (SDC) for the use of SOFC electrolyte," Materials Today: Proceedings, vol. 45, (2021) 5764-5768.

DOI: 10.1016/j.matpr.2021.02.590

Google Scholar

[26] A. Ideris, E. Croiset, and M. Pritzker, "Ni-samaria-doped ceria (Ni-SDC) anode-supported solid oxide fuel cell (SOFC) operating with CO," International Journal of Hydrogen Energy, vol. 42, (2017) 9180-9187.

DOI: 10.1016/j.ijhydene.2016.05.203

Google Scholar

[27] E. A. Agarkova, O. Y. Zadorozhnaya, I. N. Burmistrov, D. V. Yalovenko, D. A. Agarkov, S. V. Rabotkin, et al., "Relationships between mechanical stability of the anode supports and electrochemical performance of intermediate-temperature SOFCs," Materials Letters, vol. 303, (2021) 130516.

DOI: 10.1016/j.matlet.2021.130516

Google Scholar

[28] C. Ni, J. Zhou, Z. Zhang, S. Li, J. Ni, K. Wu, et al., "Iron-based electrode materials for solid oxide fuel cells and electrolysers," Energy & Environmental Science, vol. 14, (2021) 6287-6319.

DOI: 10.1039/d1ee01420j

Google Scholar

[29] X. Yao, M. I. Asghar, Y. Zhao, Y. Li, and P. D. Lund, "Coking resistant Ni–La0. 8Sr0. 2FeO3 composite anode improves the stability of syngas-fueled SOFC," International Journal of Hydrogen Energy, vol. 46, (2021) 9809-9817.

DOI: 10.1016/j.ijhydene.2020.06.091

Google Scholar

[30] K. Matsumoto, Y. Tachikawa, S. M. Lyth, J. Matsuda, and K. Sasaki, "Performance and durability of Ni–Co alloy cermet anodes for solid oxide fuel cells," International Journal of Hydrogen Energy, vol. 47, (2022) 29441-29455.

DOI: 10.1016/j.ijhydene.2022.06.268

Google Scholar

[31] W. H. Kan and V. Thangadurai, "Challenges and prospects of anodes for solid oxide fuel cells (SOFCs)," Ionics, vol. 21, (2015) 301-318.

DOI: 10.1007/s11581-014-1334-6

Google Scholar

[32] M. Chen, H. Zhang, L. Fan, C. Wang, and B. Zhu, "Ceria-carbonate composite for low temperature solid oxide fuel cell: Sintering aid and composite effect," International Journal of Hydrogen Energy, vol. 39, (2014) 12309-12316.

DOI: 10.1016/j.ijhydene.2014.04.004

Google Scholar

[33] M. Ahsan, M. Irshad, P. F. Fu, K. Siraj, R. Raza, and F. Javed, "The effect of calcination temperature on the properties of Ni-SDC cermet anode," Ceramics International, vol. 46, (2020) 2780-2785.

DOI: 10.1016/j.ceramint.2019.09.268

Google Scholar

[34] K. H. Ng, S. Lidiyawati, M. R. Somalu, A. Muchtar, and H. A. Rahman, "Influence of Calcination on the Properties of Nickel Oxide-Samarium Doped Ceria Carbonate (NiO-SDCC) Composite Anodes," Procedia Chemistry, vol. 19, (2016) 267-274.

DOI: 10.1016/j.proche.2016.03.104

Google Scholar

[35] K. H. Tan, H. A. Rahman, M. S. Azami, U. A. Yusop, N. A. Baharuddin, and M. I. N. Ma'arof, "Electrochemical and material characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate perovskite cathode composite for low-temperature solid oxide fuel cell," Ceramics International, vol. 48, (2022) 34258-34264.

DOI: 10.1016/j.ceramint.2022.07.325

Google Scholar

[36] R. Jarot, A. Muchtar, W. R. Wan Daud, N. Muhamad, and E. H. Majlan, "Fabrication of dense composite ceramic electrolyte SDC-(Li/Na) 2Co3," Key Engineering Materials, vol. 447, (2010) 666-670.

DOI: 10.4028/www.scientific.net/kem.447-448.666

Google Scholar

[37] S. A. Muhammed Ali, A. Muchtar, A. Bakar Sulong, N. Muhamad, and E. Herianto Majlan, "Influence of sintering temperature on the power density of samarium-doped-ceria carbonate electrolyte composites for low-temperature solid oxide fuel cells," Ceramics International, vol. 39, (2013) 5813-5820.

DOI: 10.1016/j.ceramint.2013.01.002

Google Scholar

[38] H. Ng Kei, A. R. Hamimah, and S. Mahendra Rao, "Influence of Silver (Ag) Addition on the Morphological and Thermal Characteristics of NiO-SDC Carbonate Composite Anode," International Journal of Integrated Engineering, vol. 10, (2018).

Google Scholar

[39] L. S. Mahmud, A. Muchtar, M. R. Somalu, and A. A. Jais, "Processing of composites based on NiO, samarium-doped ceria and carbonates (NiO-SDCC) as anode support for solid oxide fuel cells," Processing and Application of Ceramics, vol. 11, (2017) 206-212.

DOI: 10.2298/pac1703206m

Google Scholar

[40] A. A. Jais, S. A. M. Ali, M. Anwar, M. R. Somalu, A. Muchtar, W. N. R. W. Isahak, et al., "Performance of Ni/10Sc1CeSZ anode synthesized by glycine nitrate process assisted by microwave heating in a solid oxide fuel cell fueled with hydrogen or methane," Journal of Solid State Electrochemistry, (2020) 711-722.

DOI: 10.1007/s10008-020-04512-6

Google Scholar

[41] M. Chen, B. H. Kim, Q. Xu, O. J. Nam, and J. H. Ko, "Synthesis and performances of Ni–SDC cermets for IT-SOFC anode," Journal of the European Ceramic Society, vol. 28, (2008) 2947-2953.

DOI: 10.1016/j.jeurceramsoc.2008.05.009

Google Scholar

[42] K. Li, X. Wang, L. Jia, D. Yan, J. Pu, B. Chi, et al., "High performance Ni–Fe alloy supported SOFCs fabricated by low cost tape casting-screen printing-cofiring process," International Journal of Hydrogen Energy, vol. 39, (2014) 19747-19752.

DOI: 10.1016/j.ijhydene.2014.09.146

Google Scholar

[43] C.-K. Cho, B.-H. Choi, and K.-T. Lee, "Electrochemical performance of Ni1−xFex-Ce0.8Gd0.2 O1.9 cermet anodes for solid oxide fuel cells using hydrocarbon fuel," Ceramics International, vol. 39, (2013) 389-394.

DOI: 10.1016/j.ceramint.2012.06.039

Google Scholar

[44] C. J. Fu, S. H. Chan, X. M. Ge, Q. L. Liu, and G. Pasciak, "A promising Ni–Fe bimetallic anode for intermediate-temperature SOFC based on Gd-doped ceria electrolyte," International Journal of Hydrogen Energy, vol. 36, (2011) 13727-13734.

DOI: 10.1016/j.ijhydene.2011.07.119

Google Scholar

[45] Q. Liu, X. Dong, C. Yang, S. Ma, and F. Chen, "Self-rising synthesis of Ni–SDC cermets as anodes for solid oxide fuel cells," Journal of Power Sources, vol. 195, (2010) 1543-1550.

DOI: 10.1016/j.jpowsour.2009.09.071

Google Scholar

[46] H. Shimada, T. Suzuki, T. Yamaguchi, H. Sumi, K. Hamamoto, and Y. Fujishiro, "Challenge for lowering concentration polarization in solid oxide fuel cells," Journal of Power Sources, vol. 302, (2015) 53-60.

DOI: 10.1016/j.jpowsour.2015.10.024

Google Scholar

[47] L. Barelli, E. Barluzzi, and G. Bidini, "Diagnosis methodology and technique for solid oxide fuel cells: A review," International Journal of Hydrogen Energy, vol. 38, (2013) 5060-5074.

DOI: 10.1016/j.ijhydene.2013.02.024

Google Scholar

[48] Z. Jamil, E. Ruiz-Trejo, P. Boldrin, and N. P. Brandon, "Anode fabrication for solid oxide fuel cells: Electroless and electrodeposition of nickel and silver into doped ceria scaffolds," International Journal of Hydrogen Energy, vol. 41, (2016) 9627-9637.

DOI: 10.1016/j.ijhydene.2016.04.061

Google Scholar

[49] S. A. Muhammed Ali, R. E. Rosli, A. Muchtar, A. B. Sulong, M. R. Somalu, and E. H. Majlan, "Effect of sintering temperature on surface morphology and electrical properties of samarium-doped ceria carbonate for solid oxide fuel cells," Ceramics International, vol. 41, (2015) 1323-1332.

DOI: 10.1016/j.ceramint.2014.09.064

Google Scholar

[50] J. Patakangas, Y. Ma, Y. Jing, and P. Lund, "Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC)," Journal of Power Sources, vol. 263, (2014) 315-331.

DOI: 10.1016/j.jpowsour.2014.04.008

Google Scholar

[51] J. W. Fergus, R. Hui, X. Li, D. P. Wilkinson, and J. Zhang, Solid oxide fuel cells: Materials properties and performance. CRC Press, Taylor & Francis Group, UK, 2009.

Google Scholar

[52] A. A. Jais, S. M. Ali, M. Anwar, M. R. Somalu, A. Muchtar, W. N. R. W. Isahak, et al., "Enhanced ionic conductivity of scandia-ceria-stabilized-zirconia (10Sc1CeSZ) electrolyte synthesized by the microwave-assisted glycine nitrate process," Ceramics International, vol. 43, (2017) 8119-8125.

DOI: 10.1016/j.ceramint.2017.03.135

Google Scholar

[53] A. J. Rayner, R. M. Clemmer, and S. F. Corbin, "Determination of the activation energy and master sintering curve for NiO/YSZ composite solid oxide fuel cell anodes," Journal of the American Ceramic Society, vol. 98, (2015) 1060-1065.

DOI: 10.1111/jace.13405

Google Scholar

[54] B. Patil and S. Basu, "Synthesis and characterization of PdO-NiO-SDC nano-powder by glycine-nitrate combustion synthesis for anode of IT-SOFC," Energy Procedia, vol. 54, (2014) 669-679.

DOI: 10.1016/j.egypro.2014.07.308

Google Scholar

[55] T. Ishihara and H. Zhong, "Effects of Fe addition on the surface reaction of the anode of intermediate temperature solid oxide fuel cells," Scripta Materialia, vol. 65, (2011) 108-111.

DOI: 10.1016/j.scriptamat.2010.08.022

Google Scholar

[56] Y. Lin, C. Su, C. Huang, J. S. Kim, C. Kwak, and Z. Shao, "A new symmetric solid oxide fuel cell with a samaria-doped ceria framework and a silver-infiltrated electrocatalyst," Journal of Power Sources, vol. 197, (2012) 57-64.

DOI: 10.1016/j.jpowsour.2011.09.040

Google Scholar