[1]
M. N. J. AlAwad, "Remarks on the world's current energy supply and demand," Journal of King Saud University - Engineering Sciences, vol. 34, (2022) 351.
DOI: 10.1016/j.jksues.2022.09.001
Google Scholar
[2]
O. Ellabban, H. Abu-Rub, and F. Blaabjerg, "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, vol. 39, (2014) 748-764.
DOI: 10.1016/j.rser.2014.07.113
Google Scholar
[3]
T. Elmer, M. Worall, S. Wu, and S. B. Riffat, "Fuel cell technology for domestic built environment applications: State of-the-art review," Renewable and Sustainable Energy Reviews, vol. 42, (2015) 913-931.
DOI: 10.1016/j.rser.2014.10.080
Google Scholar
[4]
A. H. Alaedini, H. K. Tourani, and M. Saidi, "A review of waste-to-hydrogen conversion technologies for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development," Journal of Environmental Management, vol. 329, (2023) 117077.
DOI: 10.1016/j.jenvman.2022.117077
Google Scholar
[5]
N. Aprianti, M. Faizal, M. Said, and S. Nasir, "Sorption-enhanced steam gasification of fine coal waste for fuel producing," Journal of King Saud University - Engineering Sciences, (2022).
DOI: 10.1016/j.jksues.2022.08.003
Google Scholar
[6]
S. A. Saadabadi, A. Thallam Thattai, L. Fan, R. E. F. Lindeboom, H. Spanjers, and P. V. Aravind, "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, vol. 134, (2019) 194-214.
DOI: 10.1016/j.renene.2018.11.028
Google Scholar
[7]
Y. Wu, J. Sang, Z. Liu, H. Fan, B. Cao, Q. Wang, et al., "Enhancing the performance and stability of solid oxide fuel cells by adopting samarium-doped ceria buffer layer," Ceramics International, vol. 49, (2023) 20290-20297.
DOI: 10.1016/j.ceramint.2023.03.152
Google Scholar
[8]
N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, "Progress in material selection for solid oxide fuel cell technology: A review," Progress in Materials Science, vol. 72, (2015) 141-337.
DOI: 10.1016/j.pmatsci.2015.01.001
Google Scholar
[9]
N. H. Hadi, M. R. Somalu, A. A. Samat, A. Muchtar, N. A. Baharuddin, and M. Anwar, "A review on the preparation of anode materials and anode films for solid oxide fuel cell applications," International Journal of Energy Research, vol. 45, (2021) 14357-14388.
DOI: 10.1002/er.6763
Google Scholar
[10]
S. Hussain and L. Yangping, "Review of solid oxide fuel cell materials: cathode, anode, and electrolyte," Energy Transitions, vol. 4, (2020) 113-126.
DOI: 10.1007/s41825-020-00029-8
Google Scholar
[11]
D. Hart, F. Lehner, S. Jones, J. Lewis, and M. Klippenstein. (2018, The Fuel Cell Industry Review 2018.
Google Scholar
[12]
M. Irshad, K. Siraj, R. Raza, A. Ali, P. Tiwari, B. Zhu, et al., "A brief description of high temperature solid oxide fuel cell's operation, materials, design, fabrication technologies and performance," Applied Sciences, vol. 6, (2016) 1-23.
DOI: 10.3390/app6030075
Google Scholar
[13]
M. Rafique, H. Nawaz, M. Shahid Rafique, M. Bilal Tahir, G. Nabi, and N. Khalid, "Material and method selection for efficient solid oxide fuel cell anode: Recent advancements and reviews," International Journal of Energy Research, vol. 43, (2018) 2423-2446.
DOI: 10.1002/er.4210
Google Scholar
[14]
N. Sazali, W. N. Wan Salleh, A. S. Jamaludin, and M. N. Mhd Razali, "New perspectives on fuel cell technology: A brief review," Membranes, vol. 10, (2020) 99.
DOI: 10.3390/membranes10050099
Google Scholar
[15]
Y. Lu, Y. Liu, M. Yousaf, M. A. K. Y. Shah, S. Yan, and C. Lu, "Efficient ion conductivity enhancement mechanism induced by metal ion diffusion of SOFCs based on Fe-doped Gd2O3 electrolyte," Electrochimica Acta, vol. 458, (2023) 142481.
DOI: 10.1016/j.electacta.2023.142481
Google Scholar
[16]
D. Aboelela and M. A. Soliman, "Hydrogen production from microbial electrolysis cells powered with microbial fuel cells," Journal of King Saud University - Engineering Sciences, (2022).
DOI: 10.1016/j.jksues.2022.05.008
Google Scholar
[17]
M. Anwar, M. A. SA, N. A. Baharuddin, N. F. Raduwan, A. Muchtar, and M. R. Somalu, "Structural, optical and electrical properties of Ce0. 8Sm0. 2-xErxO2-δ (x=0-0.2) Co-doped ceria electrolytes," Ceramics International, vol. 44, (2018) 13639-13648.
DOI: 10.1016/j.ceramint.2018.04.200
Google Scholar
[18]
H. Ding, D. Qu, H. Sun, X. Guo, J. Li, Q. Li, et al., "Improved sintering behavior and electrical performance of Ce0.8Sm0.2O2-δ-BaZr0.1Ce0.7Y0.2 O3-δ (SDC -BZCY) composite electrolytes with the addition of iron (III) oxide for IT-SOFCs," Ceramics International, vol. 45, (2019) 24702-24706.
DOI: 10.1016/j.ceramint.2019.08.209
Google Scholar
[19]
E. G. Kalinina, D. S. Rusakova, K. S. Shubin, L. V. Ermakova, and E. Y. Pikalova, "CeO2-based thin-film electrolyte membranes for intermediate temperature SOFCs: Direct electrophoretic deposition on the supporting anode from additive-modified suspensions," International Journal of Hydrogen Energy, (2023).
DOI: 10.1016/j.ijhydene.2023.01.159
Google Scholar
[20]
P. Zhu, Z. Wu, H. Wang, H. Yan, B. Li, F. Yang, et al., "Ni coarsening and performance attenuation prediction of biomass syngas fueled SOFC by combining multi-physics field modeling and artificial neural network," Applied Energy, vol. 322, (2022) 119508.
DOI: 10.1016/j.apenergy.2022.119508
Google Scholar
[21]
T. Gan, H. Song, X. Fan, Y. Liu, S. Liu, Y. Zhao, et al., "A rational design of highly active and coke-resistant anode for methanol-fueled solid oxide fuel cells with Sn doped Ni-Ce0.8Sm0.2O2−δ," Chemical Engineering Journal, vol. 455, (2023) 140692.
DOI: 10.1016/j.cej.2022.140692
Google Scholar
[22]
N. Jaiswal, K. Tanwar, R. Suman, D. Kumar, S. Uppadhya, and O. Parkash, "A brief review on ceria based solid electrolytes for solid oxide fuel cells," Journal of Alloys and Compounds, vol. 781, (2018) 984-1005.
DOI: 10.1016/j.jallcom.2018.12.015
Google Scholar
[23]
H. Wang, X. Liu, H. Bi, S. Yu, F. Han, J. Sun, et al., "Effects of NiO on the conductivity of Ce0.85 Sm0.15 O1.925 and on electrochemical properties of the cathode/electrolyte interface," Journal of Power Sources, vol. 320, (2016) 86-93.
DOI: 10.1016/j.jpowsour.2016.04.074
Google Scholar
[24]
S. P. Patil, L. D. Jadhav, and M. Chourashiya, "Investigation of quality and performance of Cu impregnated NiO-GDC as anode for IT-SOFCs," Open Ceramics, vol. 9, (2022) 100230.
DOI: 10.1016/j.oceram.2022.100230
Google Scholar
[25]
S. K. Rout and S. K. Pratihar, "Tailoring of properties in the preparation level of nano crystalline Ce0.8Sm0.2O1.9-δ (SDC) for the use of SOFC electrolyte," Materials Today: Proceedings, vol. 45, (2021) 5764-5768.
DOI: 10.1016/j.matpr.2021.02.590
Google Scholar
[26]
A. Ideris, E. Croiset, and M. Pritzker, "Ni-samaria-doped ceria (Ni-SDC) anode-supported solid oxide fuel cell (SOFC) operating with CO," International Journal of Hydrogen Energy, vol. 42, (2017) 9180-9187.
DOI: 10.1016/j.ijhydene.2016.05.203
Google Scholar
[27]
E. A. Agarkova, O. Y. Zadorozhnaya, I. N. Burmistrov, D. V. Yalovenko, D. A. Agarkov, S. V. Rabotkin, et al., "Relationships between mechanical stability of the anode supports and electrochemical performance of intermediate-temperature SOFCs," Materials Letters, vol. 303, (2021) 130516.
DOI: 10.1016/j.matlet.2021.130516
Google Scholar
[28]
C. Ni, J. Zhou, Z. Zhang, S. Li, J. Ni, K. Wu, et al., "Iron-based electrode materials for solid oxide fuel cells and electrolysers," Energy & Environmental Science, vol. 14, (2021) 6287-6319.
DOI: 10.1039/d1ee01420j
Google Scholar
[29]
X. Yao, M. I. Asghar, Y. Zhao, Y. Li, and P. D. Lund, "Coking resistant Ni–La0. 8Sr0. 2FeO3 composite anode improves the stability of syngas-fueled SOFC," International Journal of Hydrogen Energy, vol. 46, (2021) 9809-9817.
DOI: 10.1016/j.ijhydene.2020.06.091
Google Scholar
[30]
K. Matsumoto, Y. Tachikawa, S. M. Lyth, J. Matsuda, and K. Sasaki, "Performance and durability of Ni–Co alloy cermet anodes for solid oxide fuel cells," International Journal of Hydrogen Energy, vol. 47, (2022) 29441-29455.
DOI: 10.1016/j.ijhydene.2022.06.268
Google Scholar
[31]
W. H. Kan and V. Thangadurai, "Challenges and prospects of anodes for solid oxide fuel cells (SOFCs)," Ionics, vol. 21, (2015) 301-318.
DOI: 10.1007/s11581-014-1334-6
Google Scholar
[32]
M. Chen, H. Zhang, L. Fan, C. Wang, and B. Zhu, "Ceria-carbonate composite for low temperature solid oxide fuel cell: Sintering aid and composite effect," International Journal of Hydrogen Energy, vol. 39, (2014) 12309-12316.
DOI: 10.1016/j.ijhydene.2014.04.004
Google Scholar
[33]
M. Ahsan, M. Irshad, P. F. Fu, K. Siraj, R. Raza, and F. Javed, "The effect of calcination temperature on the properties of Ni-SDC cermet anode," Ceramics International, vol. 46, (2020) 2780-2785.
DOI: 10.1016/j.ceramint.2019.09.268
Google Scholar
[34]
K. H. Ng, S. Lidiyawati, M. R. Somalu, A. Muchtar, and H. A. Rahman, "Influence of Calcination on the Properties of Nickel Oxide-Samarium Doped Ceria Carbonate (NiO-SDCC) Composite Anodes," Procedia Chemistry, vol. 19, (2016) 267-274.
DOI: 10.1016/j.proche.2016.03.104
Google Scholar
[35]
K. H. Tan, H. A. Rahman, M. S. Azami, U. A. Yusop, N. A. Baharuddin, and M. I. N. Ma'arof, "Electrochemical and material characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate perovskite cathode composite for low-temperature solid oxide fuel cell," Ceramics International, vol. 48, (2022) 34258-34264.
DOI: 10.1016/j.ceramint.2022.07.325
Google Scholar
[36]
R. Jarot, A. Muchtar, W. R. Wan Daud, N. Muhamad, and E. H. Majlan, "Fabrication of dense composite ceramic electrolyte SDC-(Li/Na) 2Co3," Key Engineering Materials, vol. 447, (2010) 666-670.
DOI: 10.4028/www.scientific.net/kem.447-448.666
Google Scholar
[37]
S. A. Muhammed Ali, A. Muchtar, A. Bakar Sulong, N. Muhamad, and E. Herianto Majlan, "Influence of sintering temperature on the power density of samarium-doped-ceria carbonate electrolyte composites for low-temperature solid oxide fuel cells," Ceramics International, vol. 39, (2013) 5813-5820.
DOI: 10.1016/j.ceramint.2013.01.002
Google Scholar
[38]
H. Ng Kei, A. R. Hamimah, and S. Mahendra Rao, "Influence of Silver (Ag) Addition on the Morphological and Thermal Characteristics of NiO-SDC Carbonate Composite Anode," International Journal of Integrated Engineering, vol. 10, (2018).
Google Scholar
[39]
L. S. Mahmud, A. Muchtar, M. R. Somalu, and A. A. Jais, "Processing of composites based on NiO, samarium-doped ceria and carbonates (NiO-SDCC) as anode support for solid oxide fuel cells," Processing and Application of Ceramics, vol. 11, (2017) 206-212.
DOI: 10.2298/pac1703206m
Google Scholar
[40]
A. A. Jais, S. A. M. Ali, M. Anwar, M. R. Somalu, A. Muchtar, W. N. R. W. Isahak, et al., "Performance of Ni/10Sc1CeSZ anode synthesized by glycine nitrate process assisted by microwave heating in a solid oxide fuel cell fueled with hydrogen or methane," Journal of Solid State Electrochemistry, (2020) 711-722.
DOI: 10.1007/s10008-020-04512-6
Google Scholar
[41]
M. Chen, B. H. Kim, Q. Xu, O. J. Nam, and J. H. Ko, "Synthesis and performances of Ni–SDC cermets for IT-SOFC anode," Journal of the European Ceramic Society, vol. 28, (2008) 2947-2953.
DOI: 10.1016/j.jeurceramsoc.2008.05.009
Google Scholar
[42]
K. Li, X. Wang, L. Jia, D. Yan, J. Pu, B. Chi, et al., "High performance Ni–Fe alloy supported SOFCs fabricated by low cost tape casting-screen printing-cofiring process," International Journal of Hydrogen Energy, vol. 39, (2014) 19747-19752.
DOI: 10.1016/j.ijhydene.2014.09.146
Google Scholar
[43]
C.-K. Cho, B.-H. Choi, and K.-T. Lee, "Electrochemical performance of Ni1−xFex-Ce0.8Gd0.2 O1.9 cermet anodes for solid oxide fuel cells using hydrocarbon fuel," Ceramics International, vol. 39, (2013) 389-394.
DOI: 10.1016/j.ceramint.2012.06.039
Google Scholar
[44]
C. J. Fu, S. H. Chan, X. M. Ge, Q. L. Liu, and G. Pasciak, "A promising Ni–Fe bimetallic anode for intermediate-temperature SOFC based on Gd-doped ceria electrolyte," International Journal of Hydrogen Energy, vol. 36, (2011) 13727-13734.
DOI: 10.1016/j.ijhydene.2011.07.119
Google Scholar
[45]
Q. Liu, X. Dong, C. Yang, S. Ma, and F. Chen, "Self-rising synthesis of Ni–SDC cermets as anodes for solid oxide fuel cells," Journal of Power Sources, vol. 195, (2010) 1543-1550.
DOI: 10.1016/j.jpowsour.2009.09.071
Google Scholar
[46]
H. Shimada, T. Suzuki, T. Yamaguchi, H. Sumi, K. Hamamoto, and Y. Fujishiro, "Challenge for lowering concentration polarization in solid oxide fuel cells," Journal of Power Sources, vol. 302, (2015) 53-60.
DOI: 10.1016/j.jpowsour.2015.10.024
Google Scholar
[47]
L. Barelli, E. Barluzzi, and G. Bidini, "Diagnosis methodology and technique for solid oxide fuel cells: A review," International Journal of Hydrogen Energy, vol. 38, (2013) 5060-5074.
DOI: 10.1016/j.ijhydene.2013.02.024
Google Scholar
[48]
Z. Jamil, E. Ruiz-Trejo, P. Boldrin, and N. P. Brandon, "Anode fabrication for solid oxide fuel cells: Electroless and electrodeposition of nickel and silver into doped ceria scaffolds," International Journal of Hydrogen Energy, vol. 41, (2016) 9627-9637.
DOI: 10.1016/j.ijhydene.2016.04.061
Google Scholar
[49]
S. A. Muhammed Ali, R. E. Rosli, A. Muchtar, A. B. Sulong, M. R. Somalu, and E. H. Majlan, "Effect of sintering temperature on surface morphology and electrical properties of samarium-doped ceria carbonate for solid oxide fuel cells," Ceramics International, vol. 41, (2015) 1323-1332.
DOI: 10.1016/j.ceramint.2014.09.064
Google Scholar
[50]
J. Patakangas, Y. Ma, Y. Jing, and P. Lund, "Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC)," Journal of Power Sources, vol. 263, (2014) 315-331.
DOI: 10.1016/j.jpowsour.2014.04.008
Google Scholar
[51]
J. W. Fergus, R. Hui, X. Li, D. P. Wilkinson, and J. Zhang, Solid oxide fuel cells: Materials properties and performance. CRC Press, Taylor & Francis Group, UK, 2009.
Google Scholar
[52]
A. A. Jais, S. M. Ali, M. Anwar, M. R. Somalu, A. Muchtar, W. N. R. W. Isahak, et al., "Enhanced ionic conductivity of scandia-ceria-stabilized-zirconia (10Sc1CeSZ) electrolyte synthesized by the microwave-assisted glycine nitrate process," Ceramics International, vol. 43, (2017) 8119-8125.
DOI: 10.1016/j.ceramint.2017.03.135
Google Scholar
[53]
A. J. Rayner, R. M. Clemmer, and S. F. Corbin, "Determination of the activation energy and master sintering curve for NiO/YSZ composite solid oxide fuel cell anodes," Journal of the American Ceramic Society, vol. 98, (2015) 1060-1065.
DOI: 10.1111/jace.13405
Google Scholar
[54]
B. Patil and S. Basu, "Synthesis and characterization of PdO-NiO-SDC nano-powder by glycine-nitrate combustion synthesis for anode of IT-SOFC," Energy Procedia, vol. 54, (2014) 669-679.
DOI: 10.1016/j.egypro.2014.07.308
Google Scholar
[55]
T. Ishihara and H. Zhong, "Effects of Fe addition on the surface reaction of the anode of intermediate temperature solid oxide fuel cells," Scripta Materialia, vol. 65, (2011) 108-111.
DOI: 10.1016/j.scriptamat.2010.08.022
Google Scholar
[56]
Y. Lin, C. Su, C. Huang, J. S. Kim, C. Kwak, and Z. Shao, "A new symmetric solid oxide fuel cell with a samaria-doped ceria framework and a silver-infiltrated electrocatalyst," Journal of Power Sources, vol. 197, (2012) 57-64.
DOI: 10.1016/j.jpowsour.2011.09.040
Google Scholar