A Decade-Long Systematic Review of EEG-Driven Gait-Intention Interfaces for Lower-Limb Rehabilitation and Prosthetics

Article Preview

Abstract:

Over the past decade, noninvasive brain-computer interfaces (BCIs) leveraging electroencephalography(EEG) to decode gait intention have matured from proof-of-concept studies to nearclinicalimplementations. We systematically reviewed 55 studies (January 2015-April 2024) usingPRISMA guidelines, focusing on neurophysiological markers (MRCPs, ERD/ERS, high-γ), signalprocessing pipelines (artifact suppression, time-frequency transforms), machine-learning classifiers(CSP-SVM, ERD SVM), and deep-learning frameworks (spatio-spectral CNNs, LSTM RNNs). Acrossstudies, median classification accuracy rose from 75% (2015-2018) to 87% (2021-2024), while detectionlatency fell below 200ms. Innovations include enhancing intention detection with emotionevokingmusic stimuli (up to early ERD and improved accuracy), decoding pediatric gait kinematicswith state-space models (r = 0.71 hip, 0.59 knee), and session-to-session transfer learning withoutrecalibration (≤4% performance drop). Challenges remain in artifact mitigation, small sample sizes,and limited multi-centre trials. We propose open, standardized datasets, transfer-learning pipelines,and larger clinical validations to accelerate translation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-118

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Berger, "Über das elektrenkephalogramm des menschen," DMW-Deutsche Medizinische Wochenschrift, vol. 60, no. 51, pp.1947-1949, 1934.

DOI: 10.1055/s-0028-1130334

Google Scholar

[2] E. Niedermeyer and F. L. da Silva, Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, 2005.

Google Scholar

[3] G. Buzsáki, C. A. Anastassiou, and C. Koch, "The origin of extracellular fields and currents- eeg, ecog, lfp and spikes," Nature reviews neuroscience, vol. 13, no. 6, pp.407-420, 2012.[4] A. I. Sburlea, L. Montesano, and J. Minguez, "Continuous detection of the self-initiated walking pre-movement state from eeg correlates without session-to-session recalibration," Journal of neural engineering, vol. 12, no. 3, p.036007, 2015.

DOI: 10.1088/1741-2560/12/3/036007

Google Scholar

[5] S. Zafar, H. F. Maqbool, M. I. Ashraf, D. J. Malik, Z. u. Abdeen, W. Ali, J. Taborri, and S. Rossi, "Towards prosthesis control: Identification of locomotion activities through EEG-based measurements," vol. 13, p.133.

DOI: 10.3390/robotics13090133

Google Scholar

[6] S. S. Hasan, M. R. Siddiquee, and O. Bai, "Supervised classification of eeg signals with score threshold regulation for pseudo-online asynchronous detection of gait intention," in 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pp.1476-1479, IEEE, 2019.

DOI: 10.1109/icmla.2019.00242

Google Scholar

[7] E. López-Larraz, J. Ibáñez, F. Trincado-Alonso, E. Monge-Pereira, J. L. Pons, and L. Montesano, "Comparing recalibration strategies for electroencephalography-based decoders of movement intention in neurological patients with motor disability," International journal of neural systems, vol. 28, no. 07, p.1750060, 2018.

DOI: 10.1142/s0129065717500605

Google Scholar

[8] N. H. M. Yusof, N. H. M. Yusof, N. A. Hamzaid, L. K. Wee, F. Jasni, and F. Oddon, "Control interfaces for intention detection in active transfemoral prosthetics: A systematic review.".

DOI: 10.21203/rs.3.rs-2814842/v1

Google Scholar

[9] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, et al., "The prisma 2020 statement: an updated guideline for reporting systematic reviews," bmj, vol. 372, 2021.

DOI: 10.31222/osf.io/jb4dx

Google Scholar

[10] Z. Zhang, X. Cai, M. Zhang, W. Chen, Y. Chen, and P. Wang, "Real-time gait intention recognition for active control of unilateral knee exoskeleton," vol. 2024, p.9426782.

DOI: 10.1155/2024/9426782

Google Scholar

[11] M. S. Al-Quraishi, I. Elamvazuthi, T. B. Tang, M. Al-Qurishi, S. Parasuraman, and A. Borboni, "Detection of lower limb movements using sensorimotor rhythms," in 2020 8th International Conference on Intelligent and Advanced Systems (ICIAS), pp.1-5, IEEE, 2021.

DOI: 10.1109/icias49414.2021.9642696

Google Scholar

[12] S. Tortora, S. Ghidoni, C. Chisari, S. Micera, and F. Artoni, "Deep learning-based bci for gait decoding from eeg with lstm recurrent neural network," Journal of neural engineering, vol. 17, no. 4, p.046011, 2020.

DOI: 10.1088/1741-2552/ab9842

Google Scholar

[13] E. Hortal, D. Planelles, E. Iáñez, A. Costa, A. Úbeda, and J. Azorín, "Detection of gait initiation through a erd-based brain-computer interface," in Advances in Neurotechnology, Electronics and Informatics: Revised Selected Papers from the 2nd International Congress on Neurotechnology, Electronics and Informatics (NEUROTECHNIX 2014), October 25-26, Rome, Italy, pp.141-150, Springer, 2016.

DOI: 10.1007/978-3-319-26242-0_10

Google Scholar

[14] D. Liu, W. Chen, Z. Pei, and J. Wang, "Detection of lower-limb movement intention from eeg signals," in 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp.84-89, IEEE, 2017.

DOI: 10.1109/iciea.2017.8282819

Google Scholar

[15] J. Choi, H. Kang, S. H. Chung, Y. Kim, U. H. Lee, J. M. Lee, S.-J. Kim, M. H. Chun, and H. Kim, "Detecting voluntary gait intention of chronic stroke patients towards top-down gait rehabilitation using eeg," in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.1560-1563, IEEE, 2016.

DOI: 10.1109/embc.2016.7591009

Google Scholar

[16] S. Park, F. C. Park, J. Choi, and H. Kim, "Eeg-based gait state and gait intention recognition using spatio-spectral convolutional neural network," in 2019 7th International winter conference on brain-computer interface (BCI), pp.1-3, IEEE, 2019.[17] T. P. Luu, D. Eguren, M. Cestari, and J. L. Contreras-Vidal, "Eeg-based neural decoding of gait in developing children," in 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp.3608-3612, IEEE, 2019.

DOI: 10.1109/smc.2019.8914380

Google Scholar

[18] J. L. Contreras-Vidal, M. Bortole, F. Zhu, K. Nathan, A. Venkatakrishnan, G. E. Francisco, R. Soto, and J. L. Pons, "Neural decoding of robot-assisted gait during rehabilitation after stroke," American journal of physical medicine & rehabilitation, vol. 97, no. 8, pp.541-550, 2018.

DOI: 10.1097/phm.0000000000000914

Google Scholar

[19] J. Choi and H. Kim, "Real-time decoding of eeg gait intention for controlling a lower-limb exoskeleton system," in 2019 7th International Winter Conference on Brain-Computer Interface (BCI), pp.1-3, IEEE, 2019.

DOI: 10.1109/iww-bci.2019.8737311

Google Scholar

[20] S. S. Hasan, M. R. Siddiquee, J. S. Marquez, and O. Bai, "Enhancement of movement intention detection using eeg signals responsive to emotional music stimulus," IEEE Transactions on Affective Computing, vol. 13, no. 3, pp.1637-1650, 2020.

DOI: 10.1109/taffc.2020.3025004

Google Scholar

[21] P. Wei, J. Zhang, P. Wei, B. Wang, and J. Hong, "Different semg and eeg features analysis for gait phase recognition," in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp.1002-1006, IEEE, 2020.

DOI: 10.1109/embc44109.2020.9175655

Google Scholar

[22] R. Dong, X. Zhang, H. Li, G. Masengo, A. Zhu, X. Shi, and C. He, "EEG generation mechanism of lower limb active movement intention and its virtual reality induction enhancement: a preliminary study," vol. 17, p.1305850.

DOI: 10.3389/fnins.2023.1305850

Google Scholar

[23] E. López-Larraz, F. Trincado-Alonso, V. Rajasekaran, S. Pérez-Nombela, A. J. Del-Ama, J. Aranda, J. Minguez, A. Gil-Agudo, and L. Montesano, "Control of an ambulatory exoskeleton with a brain-machine interface for spinal cord injury gait rehabilitation," vol. 10, p.359.

DOI: 10.3389/fnins.2016.00359

Google Scholar

[24] K. Li, X. Zhang, and Y. Du, "A svm based classification of eeg for predicting the movement intent of human body," in 2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp.402-406, IEEE, 2013.

DOI: 10.1109/urai.2013.6677297

Google Scholar

[25] E. Hortal, A. Úbeda, E. Iáñez, E. Fernández, and J. M. Azorín, "Using eeg signals to detect the intention of walking initiation and stop," in Artificial Computation in Biology and Medicine: International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2015, Elche, Spain, June 1-5, 2015, Proceedings, Part I 6, pp.278-287, Springer, 2015.

DOI: 10.1007/978-3-319-18914-7_29

Google Scholar

[26] A. I. Sburlea, L. Montesano, R. Cano de la Cuerda, I. M. Alguacil Diego, J. C. MiangolarraPage, and J. Minguez, "Detecting intention to walk in stroke patients from pre-movement EEG correlates," vol. 12, p.113.

DOI: 10.1186/s12984-015-0087-4

Google Scholar

[27] T. Janyalikit and C. A. Ratanamahatana, "Time series shapelet-based movement intention detection toward asynchronous BCI for stroke rehabilitation," vol. 10, pp.41693-41707.

DOI: 10.1109/access.2022.3167703

Google Scholar

[28] M. Jochumsen and I. K. Niazi, "Detection and classification of single-trial movement-related cortical potentials associated with functional lower limb movements," vol. 17, p.035009.

DOI: 10.1088/1741-2552/ab9a99

Google Scholar

[29] S. S. Hasan and O. Bai, "Vmd-wsst: A combined bci algorithm to predict self-paced gait intention," in 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp.3188-3193, IEEE, 2021.

DOI: 10.1109/smc52423.2021.9658856

Google Scholar

[30] P. Wei, J. Zhang, F. Tian, and J. Hong, "A comparison of neural networks algorithms for eeg and semg features based gait phases recognition," Biomedical Signal Processing and Control, vol. 68, p.102587, 2021.[31] Y. Vaghei, E. J. Park, and S. Arzanpour, "Decoding brain signals to classify gait direction anticipation," in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp.309-312, IEEE, 2022.

DOI: 10.1109/embc48229.2022.9871566

Google Scholar

[32] M. Y. M. Naser, C. Mcclary, I. A. Cheruku, B. P. R. Dendi, and S. Bhattacharya, "Prediction of gait intention by utilizing pre-movement EEG signals: A pilot study," in SoutheastCon 2023, pp.626-630, IEEE.

DOI: 10.1109/southeastcon51012.2023.10115079

Google Scholar

[33] A. Hackshaw, "Small studies: strengths and limitations," 2008.

Google Scholar

[34] G. Huang, Z. Zhao, S. Zhang, Z. Hu, J. Fan, M. Fu, J. Chen, Y. Xiao, J. Wang, and G. Dan, "Discrepancy between inter-and intra-subject variability in eeg-based motor imagery brain-computer interface: Evidence from multiple perspectives," Frontiers in neuroscience, vol. 17, p.1122661, 2023.

DOI: 10.3389/fnins.2023.1122661

Google Scholar

[35] M. Ahn and S. C. Jun, "Performance variation in motor imagery brain-computer interface: a brief review," Journal of neuroscience methods, vol. 243, pp.103-110, 2015.

DOI: 10.1016/j.jneumeth.2015.01.033

Google Scholar

[36] F. Zeng, X. Wen, H. Tang, G. Hu, W. Hou, and X. Zhang, "Age-related changes in action observation eeg response and its effect on bci performance," IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2025.

DOI: 10.1109/tnsre.2025.3566371

Google Scholar

[37] R. Gualtierotti, C. Bressi, B. Garavaglia, and P. Brambilla, "Exploring the impact of sex and gender in brain function: implications and considerations," Advances in Therapy, pp.1-7, 2024.

DOI: 10.1007/s12325-024-03016-3

Google Scholar

[38] R. Bellomo, S. J. Warrillow, and M. C. Reade, "Why we should be wary of single-center trials," Critical care medicine, vol. 37, no. 12, pp.3114-3119, 2009.

DOI: 10.1097/ccm.0b013e3181bc7bd5

Google Scholar

[39] S. J. Kamper, "Generalizability: linking evidence to practice," journal of orthopaedic & sports physical therapy, vol. 50, no. 1, pp.45-46, 2020.

DOI: 10.2519/jospt.2020.0701

Google Scholar

[40] Y. He, D. Eguren, J. M. Azorín, R. G. Grossman, T. P. Luu, and J. L. Contreras-Vidal, "Brainmachine interfaces for controlling lower-limb powered robotic systems," vol. 15, p.021004.

DOI: 10.1088/1741-2552/aaa8c0

Google Scholar

[41] A. Biasiucci, R. Leeb, I. Iturrate, S. Perdikis, A. Al-Khodairy, T. Corbet, A. Schnider, T. Schmidlin, H. Zhang, M. Bassolino, et al., "Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke," Nature communications, vol. 9, no. 1, p.2421, 2018.

DOI: 10.1038/s41467-018-04673-z

Google Scholar

[42] H. Pan, P. Ding, F. Wang, T. Li, L. Zhao, W. Nan, Y. Fu, and A. Gong, "Comprehensive evaluation methods for translating bci into practical applications: usability, user satisfaction and usage of online bci systems," Frontiers in Human Neuroscience, vol. 18, p.1429130, 2024.

DOI: 10.3389/fnhum.2024.1429130

Google Scholar

[43] J. Singh and P. Patel, "Methods for medical device design, regulatory compliance and risk management," J. Eng. Res. Reports, vol. 26, pp.373-389, 2024.

DOI: 10.9734/jerr/2024/v26i71216

Google Scholar

[44] K. Yang, "Risk management in medical devices: An application of iso 14971," in 2024 IEEE International Symposium on Product Compliance Engineering (ISPCE), pp.1-3, IEEE, 2024.

DOI: 10.1109/ispce61193.2024.10541258

Google Scholar

[45] J. Silverstein, "United states medical device regulatory framework," in Medical Regulatory Affairs, pp.237-261, Jenny Stanford Publishing, 2022.

DOI: 10.1201/9781003207696-22

Google Scholar

[46] S. M. S. Hasan, J. S. Marquez, M. R. Siddiquee, D.-Y. Fei, and O. Bai, "Preliminary study on real-time prediction of gait acceleration intention from volition-associated EEG patterns," vol. 9, pp.62676-62686.

DOI: 10.1109/access.2021.3075253

Google Scholar