Numerical Study on Geocell Retained Highway Embankment

Article Preview

Abstract:

The sustainability and performance of highway infrastructure are vital issues in the current era of rapid urbanization and civilization. The stability of highway embankments needs spatial precaution to maintain good traffic flow and serviceability performance. The lateral sliding and crack formation on the pavement appear due to a lack of confinement against embankments. Conventional retaining structures like gravity walls and reinforced cement concrete retaining walls absorb plastic strains and dissipate in the form of cracks, leading to failure of the structure. Flexibility needs to be introduced in the structure to maintain its strength and shape during the serviceable period. Less explored geocell-retained structures are a good option to maintain flexibility and stress rearrangement in different layers along the structure's height. This research aims to evaluate the structural efficiency and sustainability of the geocell-retained highway embankments as an alternative approach to conventional rigid retaining walls. In the current study, numerical analysis was performed using the Abaqus 2017 version on the geocell retained wall by considering three different shapes (square, hexagonal, and honeycomb) of geocell fiber with aggregates as infill material. Highway cyclic loading (0.5 Hz) and seismic loading (7.5M Kobe earthquake-0.05 Hz) are analyzed respectively. The horizontal stress, displacement, and crest settlement are considered basic parameters to judge geocell efficiency over conventional retaining structures. Shapes like square geocells perform well compared to hexagonal and honeycomb shapes due to more contact area and uniform all-around lateral confinement against instability. This study found that square-shaped geocells provide superior confinement and stability, minimizing crest settlement (1.5 mm under static loading and 0.5 mm under seismic loading) and enabling efficient stress distribution. The findings suggest that geocell-reinforced systems, especially with square cells, offer a much more cost-effective and flexible solution for enhancing the durability and performance of the highway embankments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-73

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Al-Homoud, A. S., Tal, A. B., & Taqieddin, S. A. (1997). A comparative study of slope stability methods and mitigative design of a highway embankment landslide with a potential for deep seated sliding. Engineering geology, 47(1-2), 157-173.

DOI: 10.1016/s0013-7952(97)00016-1

Google Scholar

[2] Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India.

Google Scholar

[3] Das, B. M. (2010). Principles of foundation engineering, SI Edition. Cengage learning.

Google Scholar

[4] Bathurst, R. J., & Hatami, K. (1998). Seismic response analysis of a geosynthetic-reinforced soil retaining wall. Geosynthetics International, 5(1-2), 127-166.

DOI: 10.1680/gein.5.0117

Google Scholar

[5] Leshchinsky, B., & Ling, H. (2013). Effects of geocell confinement on strength and deformation behavior of gravel. Journal of Geotechnical and Geoenvironmental Engineering, 139(2), 340-352.

DOI: 10.1061/(asce)gt.1943-5606.0000757

Google Scholar

[6] Chen, R. H., & Chiu, Y. M. (2008). Model tests of geocell retaining structures. Geotextiles and Geomembranes, 26(1), 56-70.

DOI: 10.1016/j.geotexmem.2007.03.001

Google Scholar

[7] Xie, Y., & Yang, X. (2009). Characteristics of a new-type geocell flexible retaining wall. Journal of materials in civil engineering, 21(4), 171-175.

DOI: 10.1061/(asce)0899-1561(2009)21:4(171)

Google Scholar

[8] Ling, H. I., Leshchinsky, D., Wang, J. P., Mohri, Y., & Rosen, A. (2009). Seismic response of geocell retaining walls: experimental studies. Journal of Geotechnical and Geoenvironmental Engineering, 135(4), 515-524.

DOI: 10.1061/(asce)1090-0241(2009)135:4(515)

Google Scholar

[9] Pokharel, S. K., Han, J., Leshchinsky, D., & Parsons, R. L. (2018). Experimental evaluation of geocell-reinforced bases under repeated loading. International Journal of Pavement Research and Technology, 11(2), 114-127.

DOI: 10.1016/j.ijprt.2017.03.007

Google Scholar

[10] Han, J., & Gabr, M. A. (2002). Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil. Journal of geotechnical and geoenvironmental engineering, 128(1), 44-53.

DOI: 10.1061/(asce)1090-0241(2002)128:1(44)

Google Scholar

[11] Li, J., Li, X., Jing, M., & Pang, R. (2022). Numerical Limit Analysis of the Stability of Reinforced Retaining Walls with the Strength Reduction Method. Water, 14(15), 2319.

DOI: 10.3390/w14152319

Google Scholar

[12] Basack, S., Indraratna, B., & Rujikiatkamjorn, C. (2016). Modeling the performance of stone column–reinforced soft ground under static and cyclic loads. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015067.

DOI: 10.1061/(asce)gt.1943-5606.0001378

Google Scholar

[13] Lal, B. R. R. Experimental and finite element analysis of geocell reinforced fly ash retaining wall (Doctoral dissertation, Indian Institute of Technology Bombay).

Google Scholar

[14] Song, F., Hu, H. B., Ma, L. Q., & Zhao, Y. B. (2016). Engineering application of a new type geocell retaining wall with variable cross-section. International Journal of Earth Sciences and Engineering, 1602-1606.

Google Scholar

[15] Madhavi Latha, G., & Manju, G. S. (2016). Seismic response of geocell retaining walls through shaking table tests. International Journal of Geosynthetics and Ground Engineering, 2, 1-15.

DOI: 10.1007/s40891-016-0048-4

Google Scholar

[16] Song, F., Liu, H., Chai, H., & Chen, J. (2017). Stability analysis of geocell-reinforced retaining walls. Geosynthetics International, 24(5), 442-450.

DOI: 10.1680/jgein.17.00013

Google Scholar

[17] Song, F., Chai, H., Zhao, J., & Yang, M. (2016). Numerical analysis of the effect of surcharge on the mechanical behavior of geocell reinforced retaining wall. Stavební obzor-Civil Engineering Journal, 25(4).

DOI: 10.14311/cej.2016.04.0025

Google Scholar

[18] Krishna, A. M., & Biswas, A. (2021). Performance of geosynthetic reinforced shallow foundations. Indian Geotechnical Journal, 51(3), 583-597.

DOI: 10.1007/s40098-021-00546-3

Google Scholar

[19] Wang, J. Q., Ye, B., Zhang, L. L., & Li, L. (2018). Large-scale model analysis on bearing characteristics of Geocell-reinforced Earth retaining wall under cyclic dynamic load. In Proceedings of GeoShanghai 2018 international conference: ground improvement and geosynthetics (pp.455-462). Springer Singapore.

DOI: 10.1007/978-981-13-0122-3_50

Google Scholar

[20] Mandhaniya, P., Shahu, J. T., & Chandra, S. (2022, September). Numerical analysis on combinations of geosynthetically reinforced earth foundations for high-speed rail transportation. In Structures (Vol. 43, pp.738-751). Elsevier.

DOI: 10.1016/j.istruc.2022.07.003

Google Scholar

[21] Kurihashi, Y., Oyama, R., Komuro, M., Murata, Y., & Watanabe, S. (2020). Experimental study on buffering system for concrete retaining walls using geocell filled with single-grain crushed stone. International Journal of Civil Engineering, 18(10), 1097-1111.

DOI: 10.1007/s40999-020-00520-9

Google Scholar

[22] Chiang, J., Yang, K. H., Chan, Y. H., & Yuan, C. L. (2021). Finite element analysis and design method of geosynthetic-reinforced soil foundation subjected to normal fault movement. Computers and Geotechnics, 139, 104412.

DOI: 10.1016/j.compgeo.2021.104412

Google Scholar

[23] Choudhary, A. K., Jha, J. N., & Gill, K. S. (2020). Uplift behavior of geocell-reinforced vertical plate anchors in sand. Geotextiles and Geomembranes, 48(2), 233–242.

DOI: 10.1016/j.geotexmem.2017.11.008

Google Scholar

[24] Rufaida, Z. (2021). Experimental and numerical analysis of geocell-reinforced base layer with different infill materials overlying clay [Master's thesis, XYZ University].

Google Scholar

[25] Zhang, B., Song, F., & Li, W. (2023). Stability Analysis of Retaining Walls with Geocell-Reinforced Road Milling Materials. Sustainability, 15(5), 4297.

DOI: 10.3390/su15054297

Google Scholar

[26] Ghani, S., Kumari, S., & Choudhary, A. K. (2024). Geocell mattress reinforcement for bottom ash: a comprehensive study of load-settlement characteristics. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48(2), 727-743.

DOI: 10.1007/s40996-023-01205-8

Google Scholar

[27] Thakur, J. K., Han, J., Leshchinsky, D., Halahmi, I., & Parsons, R. L. (2011). Creep deformation of unreinforced and geocell-reinforced recycled asphalt pavements. In Geo-Frontiers 2011: Advances in Geotechnical Engineering (pp.4723-4732).

DOI: 10.1061/41165(397)483

Google Scholar

[28] Wu, K. J., & Austin, D. N. (1992). Three-dimensional polyethylene geocells for erosion control and channel linings. In Geosynthetics in Filtration, Drainage and Erosion Control (pp.275-284). Elsevier.

DOI: 10.1016/b978-1-85166-796-3.50023-2

Google Scholar

[29] Clarkson, L., & Williams, D. (2021). An overview of conventional tailings dam geotechnical failure mechanisms. Mining, Metallurgy & Exploration, 38(3), 1305-1328.

DOI: 10.1007/s42461-021-00381-3

Google Scholar

[30] Biswas, A., & Krishna, A. M. (2017). Geocell-reinforced foundation systems: a critical review. International Journal of Geosynthetics and Ground Engineering, 3, 1-18.

DOI: 10.1007/s40891-017-0093-7

Google Scholar

[31] Gorai, M. (2022). "Geosynthetics-state engineering applications tool the role and use of geo synthetics in state engineering and extensive projects in India". Available at SSRN 4152133.

DOI: 10.2139/ssrn.4152133

Google Scholar

[32] Omori, H., Kaneko, K., Horie, M., Shimada, M., & Kumagai, K. (2006). Field observation and deformation measurements of geo-cell reinforced retaining walls. Geosynthetics Engineering Journal, 21, 23-30.

Google Scholar

[33] Kief, O., Schary, Y., & Pokharel, S. K. (2015). High-modulus geocells for sustainable highway infrastructure. Indian Geotechnical Journal, 45(4), 389-400.

DOI: 10.1007/s40098-014-0129-z

Google Scholar

[34] Kumar, V., Agrawal, K. N., & Sridharan, A. (2019). Challenges of Embankment Design to Comply with Statutory Requirements for Environment Protection. In Geotechnics for Transportation Infrastructure: Recent Developments, Upcoming Technologies and New Concepts, Volume 1 (pp.119-132). Springer Singapore.

DOI: 10.1007/978-981-13-6701-4_7

Google Scholar

[35] Ajeet¹, A. K., & Chandra, S. Review on Geosynthetics Reinforced Ballasted Rail Tracks. Recent Developments in Civil Engineering.

Google Scholar

[36] Pillai, A. G., Rao, K. N. S., Jakka, R. S., & Singh, A. P. (2023). IGS NEWS.

Google Scholar

[37] Elias, T., & Shirlal, K. G. (2021). Coastal protection using geosynthetic containment systems—An Indian timeline. In Proceedings of the Fifth International Conference in Ocean Engineering (ICOE2019) (pp.439-450).

DOI: 10.1007/978-981-15-8506-7_38

Google Scholar

[38] Venkatachalam, M. N., & Balu, S. (2022). A review on the application of industrial waste as reinforced earth fills in mechanically stabilized earth retaining walls. Environmental Science and Pollution Research, 29(57), 86277-86297.

DOI: 10.1007/s11356-021-17953-x

Google Scholar

[39] Horvath, J. H. (2013). Cellular Geosynthetics in Highway Applications. In 64th Highway Geology Symposium.

Google Scholar

[40] Xu, Y., Karim, M. R., Freney, M., Rahman, M. M., Hassanli, R., & Zhuge, Y. (2023). Experimental study on the mechanical performance of tyre encased soil elements for structural wall applications. Case Studies in Construction Materials, 18, e01971.

DOI: 10.1016/j.cscm.2023.e01971

Google Scholar

[41] Börgesson, L. (1996)."Abaqus". In Developments in geotechnical engineering (Vol. 79, pp.565-570). Elsevier.

Google Scholar

[42] Pokharel, S. K., Han, J., Leshchinsky, D., & Parsons, R. L. (2018). Experimental evaluation of geocell-reinforced bases under repeated loading. International Journal of Pavement Research and Technology, 11(2), 114-127.

DOI: 10.1016/j.ijprt.2017.03.007

Google Scholar

[43] Dassault Systèmes. (2014). ABAQUS analysis user's manual (Version 6.14). Dassault Systèmes Simulia Corp.

Google Scholar

[44] Ibrahim, S. F., Sofia, G. G., & Teama, Z. T. (2014). An approach in evaluating of flexible pavement in permanent deformation OF paved and unpaved roads over sand dunes subgrade under repeated loads. J. Environ. Earth Sci, 4(14), 78-90.

Google Scholar

[45] Wu, T., Jin, H., Guo, L., Sun, H., Tong, J., Jiang, Y., & Wei, P. (2022). Predicting method on settlement of soft subgrade soil caused by traffic loading involving principal stress rotation and loading frequency. Soil Dynamics and Earthquake Engineering, 152, 107023.

DOI: 10.1016/j.soildyn.2021.107023

Google Scholar

[46] Indian Roads Congress. (2018). IRC:37-2018: Guidelines for the design of flexible pavements (4th Rev.). New Delhi, India: Indian Roads Congress.

Google Scholar

[47] Fukushima, Y., Irikura, K., Uetake, T., & Matsumoto, H. (2000). Characteristics of observed peak amplitude for strong ground motion from the 1995 Hyogoken Nanbu (Kobe) earthquake. Bulletin of the Seismological Society of America, 90(3), 545-565.

DOI: 10.1785/0119990066

Google Scholar

[48] Mises, R.V. (1913). Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1913, 582-592.

DOI: 10.1002/ange.19390522011

Google Scholar

[49] Barsanescu, P.D., & Comanici, A. M. (2017). Von Mises hypothesis revised. Acta Mechanica, 228, 433-446.

DOI: 10.1007/s00707-016-1706-2

Google Scholar