[1]
Al-Homoud, A. S., Tal, A. B., & Taqieddin, S. A. (1997). A comparative study of slope stability methods and mitigative design of a highway embankment landslide with a potential for deep seated sliding. Engineering geology, 47(1-2), 157-173.
DOI: 10.1016/s0013-7952(97)00016-1
Google Scholar
[2]
Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India.
Google Scholar
[3]
Das, B. M. (2010). Principles of foundation engineering, SI Edition. Cengage learning.
Google Scholar
[4]
Bathurst, R. J., & Hatami, K. (1998). Seismic response analysis of a geosynthetic-reinforced soil retaining wall. Geosynthetics International, 5(1-2), 127-166.
DOI: 10.1680/gein.5.0117
Google Scholar
[5]
Leshchinsky, B., & Ling, H. (2013). Effects of geocell confinement on strength and deformation behavior of gravel. Journal of Geotechnical and Geoenvironmental Engineering, 139(2), 340-352.
DOI: 10.1061/(asce)gt.1943-5606.0000757
Google Scholar
[6]
Chen, R. H., & Chiu, Y. M. (2008). Model tests of geocell retaining structures. Geotextiles and Geomembranes, 26(1), 56-70.
DOI: 10.1016/j.geotexmem.2007.03.001
Google Scholar
[7]
Xie, Y., & Yang, X. (2009). Characteristics of a new-type geocell flexible retaining wall. Journal of materials in civil engineering, 21(4), 171-175.
DOI: 10.1061/(asce)0899-1561(2009)21:4(171)
Google Scholar
[8]
Ling, H. I., Leshchinsky, D., Wang, J. P., Mohri, Y., & Rosen, A. (2009). Seismic response of geocell retaining walls: experimental studies. Journal of Geotechnical and Geoenvironmental Engineering, 135(4), 515-524.
DOI: 10.1061/(asce)1090-0241(2009)135:4(515)
Google Scholar
[9]
Pokharel, S. K., Han, J., Leshchinsky, D., & Parsons, R. L. (2018). Experimental evaluation of geocell-reinforced bases under repeated loading. International Journal of Pavement Research and Technology, 11(2), 114-127.
DOI: 10.1016/j.ijprt.2017.03.007
Google Scholar
[10]
Han, J., & Gabr, M. A. (2002). Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil. Journal of geotechnical and geoenvironmental engineering, 128(1), 44-53.
DOI: 10.1061/(asce)1090-0241(2002)128:1(44)
Google Scholar
[11]
Li, J., Li, X., Jing, M., & Pang, R. (2022). Numerical Limit Analysis of the Stability of Reinforced Retaining Walls with the Strength Reduction Method. Water, 14(15), 2319.
DOI: 10.3390/w14152319
Google Scholar
[12]
Basack, S., Indraratna, B., & Rujikiatkamjorn, C. (2016). Modeling the performance of stone column–reinforced soft ground under static and cyclic loads. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015067.
DOI: 10.1061/(asce)gt.1943-5606.0001378
Google Scholar
[13]
Lal, B. R. R. Experimental and finite element analysis of geocell reinforced fly ash retaining wall (Doctoral dissertation, Indian Institute of Technology Bombay).
Google Scholar
[14]
Song, F., Hu, H. B., Ma, L. Q., & Zhao, Y. B. (2016). Engineering application of a new type geocell retaining wall with variable cross-section. International Journal of Earth Sciences and Engineering, 1602-1606.
Google Scholar
[15]
Madhavi Latha, G., & Manju, G. S. (2016). Seismic response of geocell retaining walls through shaking table tests. International Journal of Geosynthetics and Ground Engineering, 2, 1-15.
DOI: 10.1007/s40891-016-0048-4
Google Scholar
[16]
Song, F., Liu, H., Chai, H., & Chen, J. (2017). Stability analysis of geocell-reinforced retaining walls. Geosynthetics International, 24(5), 442-450.
DOI: 10.1680/jgein.17.00013
Google Scholar
[17]
Song, F., Chai, H., Zhao, J., & Yang, M. (2016). Numerical analysis of the effect of surcharge on the mechanical behavior of geocell reinforced retaining wall. Stavební obzor-Civil Engineering Journal, 25(4).
DOI: 10.14311/cej.2016.04.0025
Google Scholar
[18]
Krishna, A. M., & Biswas, A. (2021). Performance of geosynthetic reinforced shallow foundations. Indian Geotechnical Journal, 51(3), 583-597.
DOI: 10.1007/s40098-021-00546-3
Google Scholar
[19]
Wang, J. Q., Ye, B., Zhang, L. L., & Li, L. (2018). Large-scale model analysis on bearing characteristics of Geocell-reinforced Earth retaining wall under cyclic dynamic load. In Proceedings of GeoShanghai 2018 international conference: ground improvement and geosynthetics (pp.455-462). Springer Singapore.
DOI: 10.1007/978-981-13-0122-3_50
Google Scholar
[20]
Mandhaniya, P., Shahu, J. T., & Chandra, S. (2022, September). Numerical analysis on combinations of geosynthetically reinforced earth foundations for high-speed rail transportation. In Structures (Vol. 43, pp.738-751). Elsevier.
DOI: 10.1016/j.istruc.2022.07.003
Google Scholar
[21]
Kurihashi, Y., Oyama, R., Komuro, M., Murata, Y., & Watanabe, S. (2020). Experimental study on buffering system for concrete retaining walls using geocell filled with single-grain crushed stone. International Journal of Civil Engineering, 18(10), 1097-1111.
DOI: 10.1007/s40999-020-00520-9
Google Scholar
[22]
Chiang, J., Yang, K. H., Chan, Y. H., & Yuan, C. L. (2021). Finite element analysis and design method of geosynthetic-reinforced soil foundation subjected to normal fault movement. Computers and Geotechnics, 139, 104412.
DOI: 10.1016/j.compgeo.2021.104412
Google Scholar
[23]
Choudhary, A. K., Jha, J. N., & Gill, K. S. (2020). Uplift behavior of geocell-reinforced vertical plate anchors in sand. Geotextiles and Geomembranes, 48(2), 233–242.
DOI: 10.1016/j.geotexmem.2017.11.008
Google Scholar
[24]
Rufaida, Z. (2021). Experimental and numerical analysis of geocell-reinforced base layer with different infill materials overlying clay [Master's thesis, XYZ University].
Google Scholar
[25]
Zhang, B., Song, F., & Li, W. (2023). Stability Analysis of Retaining Walls with Geocell-Reinforced Road Milling Materials. Sustainability, 15(5), 4297.
DOI: 10.3390/su15054297
Google Scholar
[26]
Ghani, S., Kumari, S., & Choudhary, A. K. (2024). Geocell mattress reinforcement for bottom ash: a comprehensive study of load-settlement characteristics. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48(2), 727-743.
DOI: 10.1007/s40996-023-01205-8
Google Scholar
[27]
Thakur, J. K., Han, J., Leshchinsky, D., Halahmi, I., & Parsons, R. L. (2011). Creep deformation of unreinforced and geocell-reinforced recycled asphalt pavements. In Geo-Frontiers 2011: Advances in Geotechnical Engineering (pp.4723-4732).
DOI: 10.1061/41165(397)483
Google Scholar
[28]
Wu, K. J., & Austin, D. N. (1992). Three-dimensional polyethylene geocells for erosion control and channel linings. In Geosynthetics in Filtration, Drainage and Erosion Control (pp.275-284). Elsevier.
DOI: 10.1016/b978-1-85166-796-3.50023-2
Google Scholar
[29]
Clarkson, L., & Williams, D. (2021). An overview of conventional tailings dam geotechnical failure mechanisms. Mining, Metallurgy & Exploration, 38(3), 1305-1328.
DOI: 10.1007/s42461-021-00381-3
Google Scholar
[30]
Biswas, A., & Krishna, A. M. (2017). Geocell-reinforced foundation systems: a critical review. International Journal of Geosynthetics and Ground Engineering, 3, 1-18.
DOI: 10.1007/s40891-017-0093-7
Google Scholar
[31]
Gorai, M. (2022). "Geosynthetics-state engineering applications tool the role and use of geo synthetics in state engineering and extensive projects in India". Available at SSRN 4152133.
DOI: 10.2139/ssrn.4152133
Google Scholar
[32]
Omori, H., Kaneko, K., Horie, M., Shimada, M., & Kumagai, K. (2006). Field observation and deformation measurements of geo-cell reinforced retaining walls. Geosynthetics Engineering Journal, 21, 23-30.
Google Scholar
[33]
Kief, O., Schary, Y., & Pokharel, S. K. (2015). High-modulus geocells for sustainable highway infrastructure. Indian Geotechnical Journal, 45(4), 389-400.
DOI: 10.1007/s40098-014-0129-z
Google Scholar
[34]
Kumar, V., Agrawal, K. N., & Sridharan, A. (2019). Challenges of Embankment Design to Comply with Statutory Requirements for Environment Protection. In Geotechnics for Transportation Infrastructure: Recent Developments, Upcoming Technologies and New Concepts, Volume 1 (pp.119-132). Springer Singapore.
DOI: 10.1007/978-981-13-6701-4_7
Google Scholar
[35]
Ajeet¹, A. K., & Chandra, S. Review on Geosynthetics Reinforced Ballasted Rail Tracks. Recent Developments in Civil Engineering.
Google Scholar
[36]
Pillai, A. G., Rao, K. N. S., Jakka, R. S., & Singh, A. P. (2023). IGS NEWS.
Google Scholar
[37]
Elias, T., & Shirlal, K. G. (2021). Coastal protection using geosynthetic containment systems—An Indian timeline. In Proceedings of the Fifth International Conference in Ocean Engineering (ICOE2019) (pp.439-450).
DOI: 10.1007/978-981-15-8506-7_38
Google Scholar
[38]
Venkatachalam, M. N., & Balu, S. (2022). A review on the application of industrial waste as reinforced earth fills in mechanically stabilized earth retaining walls. Environmental Science and Pollution Research, 29(57), 86277-86297.
DOI: 10.1007/s11356-021-17953-x
Google Scholar
[39]
Horvath, J. H. (2013). Cellular Geosynthetics in Highway Applications. In 64th Highway Geology Symposium.
Google Scholar
[40]
Xu, Y., Karim, M. R., Freney, M., Rahman, M. M., Hassanli, R., & Zhuge, Y. (2023). Experimental study on the mechanical performance of tyre encased soil elements for structural wall applications. Case Studies in Construction Materials, 18, e01971.
DOI: 10.1016/j.cscm.2023.e01971
Google Scholar
[41]
Börgesson, L. (1996)."Abaqus". In Developments in geotechnical engineering (Vol. 79, pp.565-570). Elsevier.
Google Scholar
[42]
Pokharel, S. K., Han, J., Leshchinsky, D., & Parsons, R. L. (2018). Experimental evaluation of geocell-reinforced bases under repeated loading. International Journal of Pavement Research and Technology, 11(2), 114-127.
DOI: 10.1016/j.ijprt.2017.03.007
Google Scholar
[43]
Dassault Systèmes. (2014). ABAQUS analysis user's manual (Version 6.14). Dassault Systèmes Simulia Corp.
Google Scholar
[44]
Ibrahim, S. F., Sofia, G. G., & Teama, Z. T. (2014). An approach in evaluating of flexible pavement in permanent deformation OF paved and unpaved roads over sand dunes subgrade under repeated loads. J. Environ. Earth Sci, 4(14), 78-90.
Google Scholar
[45]
Wu, T., Jin, H., Guo, L., Sun, H., Tong, J., Jiang, Y., & Wei, P. (2022). Predicting method on settlement of soft subgrade soil caused by traffic loading involving principal stress rotation and loading frequency. Soil Dynamics and Earthquake Engineering, 152, 107023.
DOI: 10.1016/j.soildyn.2021.107023
Google Scholar
[46]
Indian Roads Congress. (2018). IRC:37-2018: Guidelines for the design of flexible pavements (4th Rev.). New Delhi, India: Indian Roads Congress.
Google Scholar
[47]
Fukushima, Y., Irikura, K., Uetake, T., & Matsumoto, H. (2000). Characteristics of observed peak amplitude for strong ground motion from the 1995 Hyogoken Nanbu (Kobe) earthquake. Bulletin of the Seismological Society of America, 90(3), 545-565.
DOI: 10.1785/0119990066
Google Scholar
[48]
Mises, R.V. (1913). Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1913, 582-592.
DOI: 10.1002/ange.19390522011
Google Scholar
[49]
Barsanescu, P.D., & Comanici, A. M. (2017). Von Mises hypothesis revised. Acta Mechanica, 228, 433-446.
DOI: 10.1007/s00707-016-1706-2
Google Scholar