Optimal Sizing of a Hybrid PV/Diesel/Battery System for Powering Off-Grid BTS Sites in Benin

Article Preview

Abstract:

The expansion of mobile networks generates high energy demand, especially in remote areas. In Benin, the use of diesel generators in these areas leads to pollution and energy losses on site in the event of fuel shortages. To solve these problems, the integration of renewable energy sources such as solar in mobile base stations is a promising solution. The objective of this study is to optimize the integration of intermittent renewable sources, powering the base transceiver stations (BTS). This leads to the reduction of CO2 gaze emissions and the reliability of power supply to mobile networks in remote areas. The work is based on optimizing a PV/Diesel/battery hybrid system in terms of energy production to permanently power the telecommunication systems. To achieve this goal, the NSGA-II genetic algorithm is employed, taking into account a non-linear load profile that perfectly reflects the energy demand of a BTS site. The results show that the optimal power system for BTS in Benin is composed of a 12 kW diesel generator and 50 solar panels with a peak power of 540 Wc and 30 modular 48V/150Aah batteries. This system would emit 3571.3282 kg/year CO2 with a Lost Power System Probability (LPSP) equal to 4%. The average monthly consumption of the existing site, which is the subject of this study and operates on a diesel generator, is 1500 liters per month, or 18,000 liters per month. This diesel consumption results in annual pollution of 53460 tons of CO2. With the integration of solar energy in this system, the theoretical results show a consumption of 1202 liters of diesel for a production of greenhouse gases of 3571 tonnes of CO2. We note a significant reduction of about 93% on the consumption of fuel oil and on the production of greenhouse gases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-20

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. H. Alsharif, R. Nordin, et M. Ismail, « Green wireless network optimization strategies within smart grid environments for Long Term Evolution (LTE) cellular networks in Malaysia », Renewable Energy, vol. 85, p.157‑170, janv. 2016.

DOI: 10.1016/j.renene.2015.06.044

Google Scholar

[2] A. Choutri, « Gestion des ressources et de la consommation énergétique dans les réseaux mobiles hétérogènes ».

Google Scholar

[3] S. Lambert, W. Van Heddeghem, W. Vereecken, B. Lannoo, D. Colle, et M. Pickavet, « Worldwide electricity consumption of communication networks », Opt. Express, vol. 20, no 26, p. B513, déc. 2012.

DOI: 10.1364/OE.20.00B513

Google Scholar

[4] I. Humar, X. Ge, L. Xiang, M. Jo, M. Chen, et J. Zhang, « Rethinking energy efficiency models of cellular networks with embodied energy », IEEE Network, vol. 25, no 2, p.40‑49, mars 2011.

DOI: 10.1109/MNET.2011.5730527

Google Scholar

[5] F. Odoi-Yorke et A. Woenagnon, « Techno-economic assessment of solar PV/fuel cell hybrid power system for telecom base stations in Ghana », Cogent Engineering, vol. 8, no 1, p.1911285, janv. 2021.

DOI: 10.1080/23311916.2021.1911285

Google Scholar

[6] Y. H. Saad, « Gestion optimale des systèmes hybrides pour la production de l'énergie dans les sites isolés ».

Google Scholar

[7] G. C. Semassou, « Aide à la décision pour le choix de sites et systèmes énergetiques adaptés aux besoins du benin », Thèse de doctorat, Université Bordeaux-I, 1971-2013, France, 2011. Consulté le: 9 mai 2024. [En ligne]. Disponible sur: http://www.theses.fr/2011BOR14450/document

DOI: 10.3917/rs.057.0198b

Google Scholar

[8] P. K. Chetangny et al., « Optimization of a Diesel System – Stockpiling for Supplying a Remote BTS Station », in 2023 IEEE AFRICON, Nairobi, Kenya: IEEE, sept. 2023, p.1‑5.

DOI: 10.1109/AFRICON55910.2023.10293391

Google Scholar

[9] S. M. Tchike et al., « Techno-Economic and Environmental Analysis of the Integration of Renewable Energies in the Power Supply of BTS Sites Using the Optimization Method: The Case of Solar PV in Benin », in 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Nov. 2023, p.1‑6.

DOI: 10.1109/ICECET58911.2023.10389420

Google Scholar

[10] « Global Solar Atlas ». Consulté le: 24 mai 2024. [En ligne]. Disponible sur: https://globalsolaratlas.info/download/benin

Google Scholar

[11] JA Solar, « JAM72S30-525-550-MR ». Consulté le: 13 mai 2024. [En ligne]. Disponible sur: https://www.solar-europe.co.za/wp-content/uploads/2021/09/JAM72S30-540-MR.pdf

Google Scholar

[12] F. Fodhil, A. Hamidat, et O. Nadjemi, « Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria », Energy, vol. 169, p.613‑624, févr. 2019.

DOI: 10.1016/j.energy.2018.12.049

Google Scholar

[13] A. Hounnou, « Dimensionnement optimal d'un système hybride hydroélectrique-photovoltaïque-stockage pour une alimentation rurale isolée », PhD Thesis, 2019.

Google Scholar

[14] « Optimisation D Un Generateur Hybride Photovoltaïque Avec Stockage Sur Batterie Lithium Ion Pour Site Isole Ou Connecte Au Reseau Electrique - PDF Téléchargement Gratuit ». Consulté le: 14 mai 2024. [En ligne]. Disponible sur: https://docplayer.fr/72218277-Optimisation-d-un-generateur-hybride-photovoltaique-avec-stockage-sur-batterie-lithium-ion-pour-site-isole-ou-connecte-au-reseau-electrique.html

DOI: 10.21474/ijar01/17308

Google Scholar

[15] S. A. Polarium Energy, « POLARIUM-SLB48-150-146-5-TDS-rev-1.2 ». Consulté le: 15 mai 2024. [En ligne]. Disponible sur: https://fr.scribd.com/document/662285990/POLARIUM-SLB48-150-146-5-TDS-rev-1-2

Google Scholar

[16] « Batterie Lithium-Ion 12V - 250Ah - 3.2kWh - PowerBrick+ LiFePO4 LFP ». Consulté le: 17 mai 2024. [En ligne]. Disponible sur: https://www.powertechsystems.eu/fr/home/produits/pack-batterie-12v-lithium-powerbrick/batterie-lithium-ion-12v-250ah-powerbrick/

DOI: 10.69777/298856

Google Scholar

[17] C. D. Rodriguez-Gallegos et al., « A Siting and Sizing Optimization Approach for PV–Battery–Diesel Hybrid Systems », IEEE Trans. on Ind. Applicat., vol. 54, no 3, p.2637‑2645, mai 2018.

DOI: 10.1109/TIA.2017.2787680

Google Scholar

[18] S. Makhdoomi et A. Askarzadeh, « Techno-enviro-economic feasibility assessment of an off-grid hybrid energy system with/without solar tracker considering pumped hydro storage and battery », IET Renewable Power Generation, vol. 17, no 5, p.1194‑1211, 2023.

DOI: 10.1049/rpg2.12675

Google Scholar

[19] O. Djelailia, M. S. Kelaiaia, H. Labar, S. Necaibia, et F. Merad, « Energy hybridization photovoltaic/diesel generator/pump storage hydroelectric management based on online optimal fuel consumption per kWh », Sustainable Cities and Society, vol. 44, p.1‑15, janv. 2019.

DOI: 10.1016/j.scs.2018.09.037

Google Scholar

[20] K. Deb, A. Pratap, S. Agarwal, et T. Meyarivan, « A fast and elitist multiobjective genetic algorithm: NSGA-II », IEEE Trans. Evol. Computat., vol. 6, no 2, p.182‑197, avr. 2002.

DOI: 10.1109/4235.996017

Google Scholar

[21] X. Bing, « EMONSGAII_and_SPEA2 », Présentation. Consulté le: 17 juin 2024. [En ligne]. Disponible sur: https://ecs.wgtn.ac.nz/foswiki/pub/Groups/ECRG/Talks/EMONSGAII_and_SPEA2.pdf

Google Scholar