[1]
Z. Yuan, Y. Jia, Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: an experimental study, Constr. Build. Mater. 266 (2021) 121048.
DOI: 10.1016/j.conbuildmat.2020.121048
Google Scholar
[2]
C. Govardhan, V. Gayathri, Experimental investigation on ternary blended recycled aggregate concrete using glass fibers, Buildings 13 (8) (2023) 1961.
DOI: 10.3390/buildings13081961
Google Scholar
[3]
A. Garg, P.K. Sharma, Mechanical properties of glass fiber reinforced concrete with recycled aggregates, J. Appl. Sci. Eng. 24 (6) (2021) 1033–1039. DOI:10.6180/jase.202112_24 (6).0018.
Google Scholar
[4]
P.K. Mehta, P.J. Monteiro, Concrete: Microstructure, Properties, and Materials, 4th ed., McGraw-Hill, 2018.
Google Scholar
[5]
S.B. Singh, M. Gopalarathnam, V.K.R. Kodur, V.A. Matsagar (Eds.), Fiber Reinforced Polymeric Materials and Sustainable Structures, Springer, 2023.
DOI: 10.1007/978-981-19-8979-7
Google Scholar
[6]
A. Agarwal, R.S. Shekhawat, Experimental study of glass fiber reinforced concrete incorporating micro silica, J. Sci. Res. Rep. 29 (7) (2023) 90–100.
DOI: 10.9734/jsrr/2023/v29i71763
Google Scholar
[7]
RILEM Technical Committee, Environmental Benefits of Glass Fiber Composites in Construction, RILEM Publ., 2021.
Google Scholar
[8]
D. Bednarowski, P. Bazan, S. Kuciel, Enhancing strength and sustainability: evaluating glass and basalt fiber-reinforced biopolyamide as alternatives for petroleum-based polyamide composite, Polymers 15 (16) (2023) 3400.
DOI: 10.3390/polym15163400
Google Scholar
[9]
M. Yıldırım, H. Bilir Özhan, Residual durability performance of glass fiber reinforced concrete damaged by compressive stress loads, Period. Polytech. Civ. Eng. 67 (2) (2023) 392–401.
DOI: 10.3311/PPci.21387
Google Scholar
[10]
P.N. Balaguru, S.P. Shah, Fiber-Reinforced Cement Composites, CRC Press, 2020.
Google Scholar
[11]
M.M.A. Hano, Mechanical properties of glass fiber reinforced concrete, J. Sci. Res. Rep. 29 (7) (2023) 90–100.
DOI: 10.9734/jsrr/2023/v29i71763
Google Scholar
[12]
F. Bompadre, C. Scheffler, T. Utech, J. Donnini, Polymeric coatings for AR-glass fibers in cement-based matrices: effect of nanoclay on the fiber-matrix interaction, Appl. Sci. 11 (12) (2021) 5484.
DOI: 10.3390/app11125484
Google Scholar
[13]
J. Blazy, R. Blazy, Ł. Drobiec, Glass fiber reinforced concrete as a durable and enhanced material for structural and architectural elements in smart city — a review, Materials 15 (8) (2022) 2754.
DOI: 10.3390/ma15082754
Google Scholar
[14]
R.N. Oosterbeek, X.C. Zhang, S.M. Best, R.E. Cameron, A technique for improving dispersion within polymer-glass composites using polymer precipitation, Mater. Sci. Forum 33 (1) (2021) 137–145.
DOI: 10.1016/j.jmbbm.2021.104767
Google Scholar
[15]
S. Maiti, Sustainable fiber-reinforced composites: a review, Adv. Sustain. Syst. 6 (8) (2022) 1–20.
DOI: 10.1002/adsu.202200258
Google Scholar
[16]
ABNT, Concrete - Molding and Curing of Specimens (NBR 5738), Rio de Janeiro, 2020.
Google Scholar
[17]
ABNT, Humid Chambers and Tanks for Curing Specimens (NBR 9479), Rio de Janeiro, 2006.
Google Scholar
[18]
ABNT, Concrete - Cylindrical Specimen Compression Test (NBR 5739), Rio de Janeiro, 2018.
Google Scholar
[19]
ABNT, Concrete and Mortar (NBR 7222), Rio de Janeiro, 2006.
Google Scholar
[20]
P. Samrani, Y. Cao, G. Fimbres-Weihs, E. Sanjaya, A. Abbas, Effect of fly ash and ground waste glass as cement replacement in concrete 3D-printing for sustainable construction, Front. Built Environ. 10 (2024) 1430174.
DOI: 10.3389/fbuil.2024.1430174
Google Scholar
[21]
D. Yahiaoui, K. Ahmed, M. Benali, Mechanical behavior of glass fiber-reinforced concrete with GFRP confinement, SpringerOpen 15 (1) (2022) 78–91.
DOI: 10.1186/s40069-022-00525-9
Google Scholar