[1]
Roy, S. Pramanik, A. Nicolas, A review of the hydrogen fuel path to emission reduction in the surface transport industry. Int. J. Hydrog. Energy. 49, 792-821 (2024).
DOI: 10.1016/j.ijhydene.2023.07.010
Google Scholar
[2]
A.I. Ikeuba, C.U. Sonde, D. Charlie, B.E. Usibe, M. Raimi, A.I. Obike, T. O. Magu, A review on exploring the potential of liquid hydrogen as a fuel for a sustainable future. Sustainable Chemistry One World. 3, 1000022 (2024).
DOI: 10.1016/j.scowo.2024.100022
Google Scholar
[3]
S.C. Wijayaseker, K. Hewage, F. Razi, R. Sadiq, Fueling tomorrow's commute: Current status and prospects of public bus transit fleets powered by sustainable hydrogen. Int. J. Hydrog. Energy. 66, 170-184 (2024).
DOI: 10.1016/j.ijhydene.2024.04.030
Google Scholar
[4]
E.B. Agyekum, F. Odoi-Yorke, A.A. Abbey, G.K. Ayetor, A review of the trends, evolution, and future research prospects of hydrogen fuel cells – A focus on vehicles. Int. J. Hydrog. Energy, 72, 918-939 (2024)
DOI: 10.1016/j.ijhydene.2024.05.480
Google Scholar
[5]
S. Meduri and J. Nandanavanam. Materials for hydrogen storage at room temperature – An overview, Materials Today: Proceedings. 72, 1-8 (2023)
DOI: 10.1016/j.matpr.2022.05.059
Google Scholar
[6]
Y. Qian, F. Wu, Z. Deng, T. Bian, H. Zhao, P. Senin, H. Li, L. Zhang, A brief review of performance optimization and mechanism investigation of Co-based catalysts for hydrogen production from NaBH4 hydrolysis. Fuel. 397, 135331 (2025)
DOI: 10.1016/j.fuel.2025.135331
Google Scholar
[7]
F. Xu, J. Ren, J. Ma, Y. Wong, K. Zhang, Z. Cao, Q. Sun, S. Wu, G. Li, S. Bai, A review of hydrogen production kinetics from the hydrolysis of NaBH4 solution catalyzed by Co-based catalysts. Int. J. Hydrog. Energy. 50, 827-844 (2024)
DOI: 10.1016/j.ijhydene.2023.08.142
Google Scholar
[8]
X. Yang, J. Kong, X. Lu, J. Su, Q. Hou, W. Li, Hydrogen storage properties of metal borohydrides and their improvements: Research progress and trends. Int. J. Hydrog. Energy, 60, 308-323 (2024)
DOI: 10.1016/j.ijhydene.2024.02.097
Google Scholar
[9]
A.S. Mehr, A.D. Phillips, M.P. Brandon, M.T. Pryce, J.G. Carton, Recent challenges and development of technical and technoeconomic aspects for hydrogen storage, insights at different scales; A state of art review. Int. J. Hydrog. Energy, 70, 786-815 (2024)
DOI: 10.1016/j.ijhydene.2024.05.182
Google Scholar
[10]
T. Wong, J. Xi, H. Sheng, Y. Zhao, Mechanism of catalytic performance enhancement for hydrolysis of sodium borohydride by modification of cobalt boride with metals: A review. Int. J. Hydrog. Energy, 85, 120-134 (2024)
DOI: 10.1016/j.ijhydene.2024.08.353
Google Scholar
[11]
C.H. Liu, Y-C. Kuo, B.H. Chen, C.L. Hsueh, K.J. Hwang, J.R. Ku, F. Tsau, M.S. Jeng. Synthesis of solid-state NaBH4/Co-based catalyst composite for hydrogen storage through a high-energy ball-milling process. Int. J. Hydrog. Energy, 35, 4027-4040 (2010).
DOI: 10.1016/j.ijhydene.2010.02.038
Google Scholar
[12]
Cakanyildirim, M. Guru, The Processing of NaBH4 from Na2B4O7 by Mechano-chemical Synthesis and Its Catalytic Dehydrogenation. Energy Sources, Part A, 34, 1104-1113 (2012)
DOI: 10.1080/15567031003753579
Google Scholar
[13]
Ar, O.U. Guler, M. Guru, Synthesis and characterization of sodium borohydride and a novel catalyst for its dehydrogenation. Int. J. Hydrog. Energy, 43, 20214-20233 (2018)
DOI: 10.1016/j.ijhydene.2018.06.184
Google Scholar
[14]
Y. Zhu, L. Ouyang, H. Zhong, J. Liu, H. Wang, H. Shao, Z. Huang, M. Zhu. Efficient Synthesis of Sodium Borohydride: Balancing Reducing Agents with Intrinsic Hydrogen Sourcein Hydrated Borax. ACS Sustainable Chem. Eng. 8, 13449-13458 (2020)
DOI: 10.1021/acssuschemeng.0c04354
Google Scholar
[15]
H. Zhang, S. Zheng, F. Fang, G. Chen, G. Sang, D. Sun. Synthesis of NaBH4 based on a solid-state reaction under Ar atmosphere. J. Alloys Compd. 484, 352-355 (2009).
DOI: 10.1016/j.jallcom.2009.04.093
Google Scholar
[16]
S. Garroni, C. B. Minella, D. Pottmaier, C. Pistidda, C. Milanese, A. Marini, S. Enzo, G. Mulas, M. Dornheim, M. Baricco, O. Gutfleisch, S. Surin˜ach, M. D. Baro. Mechanochemical synthesis of NaBH4 starting from NaH-MgB2 reactive hydride composite system. Int. J. Hydrog. Energy. 38, 2363-2369 (2013)
DOI: 10.1016/j.ijhydene.2012.11.136
Google Scholar
[17]
K. Figen, S. Piskin, Microwave assisted green chemistry approach of sodium metaborate dihydrate (NaBO2.2H2O) synthesis and use as raw material for sodium borohydride (NaBH4) thermochemical production. Int. J. Hydrog. Energy. 38. 3702-3709 (2013)
DOI: 10.1016/j.ijhydene.2013.01.003
Google Scholar
[18]
T. Wang, K.F. Aguey-Zinsou, Direct Synthesis of NaBH4 Nanoparticles from NaOCH3 for Hydrogen Storage. Energies. 12, 4428 (2019)
DOI: 10.3390/en12234428
Google Scholar
[19]
T. Tai, H. Cao, W. Fang, Z. Yin, H. Zhang. G. Zheng. High-efficient synthesis of NaBH4 by solid-phase electrolysis process on a core-shell-type cathode. Int. J. Hydrog. Energy. 51, 172-183 (2024)
DOI: 10.1016/j.ijhydene.2023.11.043
Google Scholar
[20]
A. Nur, A.W. Budiman, A. Jumari, N. Nazriati, F. Fajaroh, Electrosynthesis of Ni- Co /Hydroxyapatite as a catalyst for hydrogen generation via the hydrolysis of aqueous sodium borohydride (NaBH4) solution. Chem. Chem. Technol. 15. 389-394. (2021)
DOI: 10.23939/chcht15.03.389
Google Scholar
[21]
A. Nur, A. Jumari, E.R. Dyartanti, T. Paramitha, R.S. Irianto, H. Ismarlina, K. Prahaspati, L.A. Kurniawan. The Release of Hydrogen from NaBH4 with Ni-Cu B/Hydroxyapatite as The Catalyst. Evergreen. 9. 421-426 (2022)
DOI: 10.5109/4794167
Google Scholar
[22]
A. Nur, A.W. Budiman, A. Jumari, J.M. Karsten, P.H. Dewani, S.L. Asyabaniyah, Z.R. Vashadinata. A Co-Fe/calcium phosphate catalyst improves the release of hydrogen from NaBH4. Int. J. Electrochem. Sci. 19. 100478 (2024)
DOI: 10.1016/j.ijoes.2024.100478
Google Scholar
[23]
W. Chen, L.Z. Ouyang, J.W. Liu, X.D. Yao, H. Wang, Z.W. Liu, M. Zhu, Hydrolysis and regeneration of sodium borohydride (NaBH4) – A combination of hydrogen production and storage, Journal of Power Sources. 359. 400-407 (2017)
DOI: 10.1016/j.jpowsour.2017.05.075
Google Scholar
[24]
B. Sljukic, D.M.F. Santos, C.A.C. Sequira, and C.E. Banks, Analytical monitoring of sodium borohydride, Analytical Methods, RSC Publishing, 5. 829 (2013).
Google Scholar
[25]
S. Zhang, B. Chen, L. Gao, T. Xiong, C. Du, Y. Zhu, Electrochemical reduction of NaBO2 into NaBH4 with pulse voltage using the Eu-Co-Ni-B coating electrode. Journal of Dispersion Science and Technology, 43, 1789-187 (2022)
DOI: 10.1080/01932691.2020.1845957
Google Scholar
[26]
W. J. Basirun, S. T. Shah, Md. Shalauddin, S. Akhter, Nazzatush, S. Jamaludin and A. Hayyan, A Review of Electrochemical Reduction of Sodium Metaborate, Energies. 16, 15 (2023)
DOI: 10.3390/en16010015
Google Scholar