Numerical Analysis of a Five-Bladed Axial Fan Using Computational Fluid Dynamics (CFD): A Comparative Study for Aerodynamic Design Optimization

Article Preview

Abstract:

A numerical study of an axial fan was conducted, with models compared to catalogue data, key results discussed, and performance improvement suggestions proposed. Research aims to numerically analyze a five-blade axial fan, using topology optimization to maximize flow rate and minimize blade count by comparing fans with varying blades to identify the optimal design. The five-blade axial fan was designed using Creo PTC Software based on standard requirements, and its numerical analysis was conducted using Computational Fluid Dynamics in ANSYS Workbench (2022 R1). The simulation results for the five-blade fan were validated against catalogue data and compared with fans having 1-7 blades. Results, presented through various contour plots and velocity streamlines, showed that the maximum airflow rate (ṁ = 1.432 kg/s) occurred with four blades, the highest-pressure contour (Ttotal = 474 kPa) with six blades, and the highest total pressure contour (Ttotal = 170 kPa) at the hub with three blades. The maximum velocity contour (V= 30 m/s) and velocity streamline at the stationary frame (V= 35 m/s) were recorded with five blades. Overall, comparing the four-blade results with the other cases shows that the four-blade configuration delivers superior performance under the same model setup and can be used to enhance future designs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-127

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Thumbe, J. VM, Analysis of a six-bladed axial fan using ANSYS, Int. J. Eng. Res. Manag. Stud. (2017) 68–75.

Google Scholar

[2] H. Kumawat, Modelling and simulation of an axial fan using CFD, Int. J. Mech. Ind. Aerosp. Sci. 11 (2014) 1858–1862

Google Scholar

[3] G. Srinivas, S.R. Potti, Numerical simulation of axial flow fan using Gambit and Fluent, Int. J. Res. Eng. Technol. (2014) 586–590

DOI: 10.15623/ijret.2014.0315109

Google Scholar

[4] S.H. Bobade, A.V. Deshpande, CFD analysis of air flow distribution over hot-rolled coils, Proc. Int. Conf. Ideas Impact Innov. Mech. Eng. (ICIIIME 2017) (2017) 1183–1191.

Google Scholar

[5] A. Candaş, H. Erkan, E. Özbalaban, CFD analysis of an industrial axial fan, Project report, Istanbul Tech. Univ., Fac. Mech. Eng., 2010.

Google Scholar

[6] S. Jain, Y. Deshpande, CFD modelling of a radiator axial fan for air flow distribution, Int. J. Mech. Mechatron. Eng. 6 (2012) 2445–2450.

Google Scholar

[7] A. Mustafa, L. Yiping, F. Mingpeng, Design optimization of axial flow fan, Int. J. Adv. Eng. Manag. 7 (2018) 1–7

Google Scholar

[8] G.B. Imanol, Aerodynamic analysis of axial fan unsteady simulations, Master's thesis, Univ. Basque Country, 2012.

Google Scholar

[9] S. Kumar, V.N. Bartaria, CFD modeling and simulation of an axial fan for application in an air-cooled heat exchanger, Int. J. Adv. Res. Sci. Eng. 6 (2017) 146–151.

Google Scholar

[10] M. Nagakiran, G. Siva, K. Sagar, Finite element analysis of axial flow fan, Int. J. Innov. Res. Sci. Eng. Technol. 4 (2015) 7633–7647

Google Scholar

[11] R. Liu, S. Xu, K. Sun, X. Ju, W. Zhang, W. Wang, X. Ma, Y. Pan, J. Li, G. Ren, CFD analysis and optimization of axial flow fans, Int. J. Simul. Multidiscip. Des. Optim. (2024)

DOI: 10.1051/smdo/2024007

Google Scholar

[12] M. Hasan, Aerodynamic analysis and comparison between axial fan of five and seven blades, ASEE Conf. Proc. (2023–2024)

DOI: 10.18260/1-2-110-46306

Google Scholar

[13] C. Lee, E.J. Noh, S.W. Kim, S.H. Yang, High-efficiency axial flow fan design by combining controlled blading design and spanwise optimization, J. Appl. Fluid Mech. (2025)

Google Scholar

[14] M. Tutar, J.B. Cam, Computational design of an energy-efficient small axial-flow fan using staggered blades with winglets, Int. J. Turbomach. Propuls. Power (2025)

DOI: 10.3390/ijtpp10010001

Google Scholar

[15] A. Podgaietsky, et al., A model-based design approach for low-pressure axial fan, Int. J. Refrig. (2024)

DOI: 10.1016/j.ijrefrig.2024.09.003

Google Scholar

[16] J. Wang, C. Kruyt, Design for high efficiency of low-pressure axial fans with varying blade count, Trans. ASME (2022)

DOI: 10.1115/1.4054919

Google Scholar

[17] Analysis and simulation of axial fan using CFD, ResearchPublish.com (2022)

Google Scholar

[18] S.M. Fakhari, et al., Optimization of an axial-flow mine ventilation fan based on numerical simulation, Eng. Appl. Comput. Fluid Mech. (2024)

Google Scholar

[19] B. Lendvai, et al., Experimental and numerical investigation of blade tip–flow interactions and performance in low-speed axial fans, Appl. Acoust. (2024)

DOI: 10.1016/j.apacoust.2023.109435

Google Scholar

[20] F. Chen, et al., Air volume flow rate optimization of the guide vanes in an axial fan system, Sci. Rep. (2023)

DOI: 10.1038/s41598-023-31666-w

Google Scholar

[21] S.V. Ch, et al., Effect of blade number on the performance of centrifugal/axial fans—numerical investigation, Energy Rep. (2023)

DOI: 10.1016/j.egyr.2023.03.050

Google Scholar

[22] A.D. Korawan, et al., Experimental investigations of number of blades effect on Archimedes spiral wind turbine performance, Renew. Energy (2024)

DOI: 10.31603/mesi.12373

Google Scholar

[23] T. Kawano, M. Fuchiwaki, Aerodynamic performances and efficiency of axial flow fan placed in cooling system, Energy Rep. (2022)

DOI: 10.1016/j.egyr.2022.10.050

Google Scholar

[24] H.A.Y. Maldonado, et al., Design, study, and comparison of a new axial fan using Fibonacci spiral and a classic axial fan, Jordan J. Mech. Ind. Eng. (2024)

DOI: 10.59038/jjmie/180106

Google Scholar

[25] K. Hatakenaka, et al., Aerodynamic optimization of axial fans mounted on…, Int. J. Refrig. (2025)

DOI: 10.1016/j.ijrefrig.2025.04.001

Google Scholar

[26] S. Sivakumar, CFD research on optimal designing of radiator axial fans, Int. J. Eng. Adv. Technol. 8 (2019) 550–553

DOI: 10.35940/ijeat.F1111.0886S19

Google Scholar

[27] ebm-papst Mulfingen GmbH & Co. KG, AC axial fan, sickle-shaped blades (S series), Product catalogue S4E450-AP01-11, ebm-papst, Mulfingen, 2019. Available at: https://www.ebmpapst.com

Google Scholar

[28] O.S. Ismail, O. Tairu, Effects of corrugated pipe shapes on the friction factor, Tech. Rep., 2012.

Google Scholar

[29] S. Faqruddin, P.H. Sankar, Design and material optimization of axial flow fans, Int. J. Ignited Minds, June (2015) 120–126.

Google Scholar

[30] S. Wrzesień, M. Frant, M. Majcher, Numerical analysis of axial fan characteristics, Mechanik 91 (2018) 606–608

DOI: 10.17814/mechanik.2018.7.98

Google Scholar

[31] N. Rajabi, R. Rafee, S. Farzam-Alipour, Effect of blade design parameters on air flow through an axial fan, Int. J. Eng. Trans. A: Basics 30 (2017) 1583–1591. https://doi.org/10.5829/ije. 2017.30.10a.20

DOI: 10.5829/ije.2017.30.10a.20

Google Scholar

[32] G. Ingram, Basic concepts in turbomachinery, Bookboon, London, 2009. Available at: https://bookboon.com

Google Scholar

[33] Q.G. Chen, F. Li, Q. Hu, Y.N. Gao, Numerical simulation of the whole flow field of an axial-flow fan used in an air conditioner, IOP Conf. Ser.: Mater. Sci. Eng. 52 (2013) 042009

DOI: 10.1088/1757-899X/52/4/042009

Google Scholar

[34] H.-H. Lin, J.-H. Cheng, Computer axial flow fan optimization design, Proc. Int. Conf. Organ. Innov. (2018) 1630–1639

DOI: 10.18502/kss.v3i10.3498

Google Scholar

[35] T. Köktürk, Design and performance analysis of a reversible axial fan, Master's thesis, Middle East Tech. Univ., 2005. Available at: https://open.metu.edu.tr

Google Scholar