[1]
Ekechukwu O.V, Norton B, Design and measured performance of a solar chimney for natural circulation solar-energy dryers, Renewable Energy. 1997: 81-90. doi:10.1016/0960-1481(96) 00005-5.
DOI: 10.1016/0960-1481(96)00005-5
Google Scholar
[2]
Kalogirou S.A, Solar energy engineering, Academic Press. 2014: 1-49.
Google Scholar
[3]
Chavan A, Vitankar V, Mujumdar A, Thorat B, Natural convection and direct type (NCDT) solar dryers: A review, Drying Technology. 2020; 39(13): 1969-1990. https://doi.org/10.1080/ 07373937.2020.1753065
DOI: 10.1080/07373937.2020.1753065
Google Scholar
[4]
Okoroigwe E.C, Eke M.N, Ugwu H.U, (2013). Design and evaluation of combined solar and biomass dryer for small and medium enterprises for developing countries, Int. J. Phys. Sci. 8(25): 1341-1349.
Google Scholar
[5]
Okoroigwe C.E, Evidence C.N, Florence C.O, (2015) Comparative evaluation of the performance of an improved solar-biomass hybrid dryer, Journal of Energy in Southern Africa. 25(4): 38-51.
DOI: 10.17159/2413-3051/2015/v26i4a2092
Google Scholar
[6]
Mohana Y, Mohanapriya R, Anukiruthika T, Yoha K.S, Moses J.A, Anandharamakrishnan C, Solar dryers for food applications: Concepts, designs, and recent advances, Solar Energy. 2020; 208: 321-344
DOI: 10.1016/j.solener.2020.07.098
Google Scholar
[7]
Khouya A, Draoui A, (2019). Computational drying model for solar kiln with latent heat energy storage: case studies of thermal application, Renewable Energy 130: 796-831.
DOI: 10.1016/j.renene.2018.06.090
Google Scholar
[8]
Bal L.M, Satya S, Naik S.N, (2010) Solar dryer with thermal energy storage systems for drying agricultural food products: a review, Renewable and Sustainable Energy Review 14: 2298-2314.
DOI: 10.1016/j.rser.2010.04.014
Google Scholar
[9]
Kant K, Shukla A, Sharma A, Kumar A, Jain A, (2016) Thermal energy storage based solar drying systems: a review, Innovat. Food Sci. Emerg. Technol. 34: 86-99.
DOI: 10.1016/j.ifset.2016.01.007
Google Scholar
[10]
Guler H.O, Sozen A, Tuncer A.D, Afshari F, Khanlari A, Sirin C, Gungor A, (2020) Experimental and CFD survey of indirect solar dryer modified with low-cost iron mesh, Solar Energy. 197: 371- 384.
DOI: 10.1016/j.solener.2020.01.021
Google Scholar
[11]
Motahayyer M, Arabhosseini A, Samimi-Akhijahani H, (2019). Numerical analysis of thermal performance of a solar dryer and validated with experimental and thermo-graphical data, Solar Energy. 193: 692-705.
DOI: 10.1016/j.solener.2019.10.001
Google Scholar
[12]
Amanlou Y, Zomorodian A, (2010) Applying CFD for designing a new fruit cabinet dryer, J. Food Eng. 101: 8-15.
DOI: 10.1016/j.jfoodeng.2010.06.001
Google Scholar
[13]
Darabi H, Zomorodian A, Akbari M.H, Lorestani A.N, (2015) Design a cabinet dryer with two geometric configurations using CFD, J. Food Sci. Technol. 52: 359-366.
DOI: 10.1007/s13197-013-0983-1
Google Scholar
[14]
Rek Z, Rudolf M, Zun I, (2012) Application of CFD Simulation in the Development of a New Generation Heating Oven, J. Mech. Eng. 58: 134-144.
DOI: 10.5545/sv-jme.2011.163
Google Scholar
[15]
Misha S, Mat S, Ruslan M.H, Sopian K, Salleh E, (2013) The Prediction of Drying Uniformity in Tray Dryer System using CFD Simulation, Int. J. Mach. Learn. Comput. 3: 419-423.
DOI: 10.7763/ijmlc.2013.v3.352
Google Scholar
[16]
Mirade P, (2003) Prediction of the air velocity field in modern meat dryers using unsteady computational fluid dynamics (CFD) models, 60: 41-48.[17] Mauro A, Massarotti N, Salahudeen M, Cuomo F, Costagliola C, Ambrosone L, Romano M.R, (2018). Design of a novel heating device for infusion fluids in vitrectomy, Appl. Therm. Eng. 128: 625-636.
DOI: 10.1016/j.applthermaleng.2017.08.027
Google Scholar
[18]
Norton T, Tiwari B, Sun D.W, Computational fluid dynamics in the design and analysis of thermal processes: a review of recent advances, Crit. Rev. Food Sci. Nutr. 2013; 53, 251-75.
Google Scholar
[19]
Tegenaw P.D, Gebrehiwot M.G, Vanierschot M, Design and CFD Modeling of a Solar Food Drier, Euro Drying. 6th European Drying Conference, 2017: 183-184.
Google Scholar
[20]
Manisha L, Shivani S.P, Pallavi A.W, Radhika S.T, Saiganesh S.B, Design and Computational Fluid Dynamics (CFD) Modelling for Solar Food Dryer, 2022; GIS Jornal. 9(7): 1511-1520.
Google Scholar
[21]
Meenakshi R.R, Siva R, Uma M.C, and Krishna K.R, CFD and experimental analysis of solar crop dryer with waste heat recovery system of exhaust gas from diesel engine, IOP Conf. Series: Earth and Environmental Science 2018; 164: 012010. doi:10.1088/1755-1315/164/1/ 012010.
DOI: 10.1088/1755-1315/164/1/012010
Google Scholar
[22]
Iloeje O.C, Ekechukwu O.V, Ezeike G.O.I, Design, Construction and Test Run of A Two-Tonne Capacity Solar Rice Dryer With Rice-Husk-Fired Auxiliary Heater, Internal Report, International Centre For Theoretical Physics (ICTP), Trieste, Italy. 1993: 1-8.
Google Scholar
[23]
Sharma, V.K, Sharma S, Ray R.A, Garg H.P, (1986) Design and performance studies of a solar dryer suitable for rural applications, Energy Conversion and Management 26(1): 111-119.
DOI: 10.1016/0196-8904(86)90040-3
Google Scholar
[24]
Barnwal P, Tiwari G.N, (2008) Grape drying by using hybrid photovoltaic-thermal (PV/ T) greenhouse dryer: an experimental study, Solar Energy. 82: 11311144.
DOI: 10.1016/j.solener.2008.05.012
Google Scholar
[25]
Pragnan L, Rahul K, Rajat S, Jatin P, Numerical investigation of phase change material assisted indirect solar dryer for food quality preservation, International Journal of Thermofluids 2023; 18: 100305
DOI: 10.1016/j.ijft.2023.100305
Google Scholar
[26]
Petros D.T, Mekonnen G.G, Maarten V, On the comparison between Computational Fluid Dynamics (CFD) and lumped capacitance modeling for the simulation of transient heat transfer in solar dryers, Solar Energy. 2019: 1-19
DOI: 10.1016/j.solener.2019.04.024
Google Scholar
[27]
Mulatu C. Gilago, Vishnuvardhan Reddy Mugi and Chandramohan VP. (2023) "Performance assessment of passive indirect solar dryer comparing without and with heat storage unit by investigating the drying kinetics of carrot",Energy Nexus, doi={https://doi.org/10.1016/j. nexus.2023.100178}
DOI: 10.1016/j.nexus.2023.100178
Google Scholar
[28]
S. Abubakar, S. Umaru, M.U. Kaisan, U.A. Umar, B. Ashok and K. Nanthagopal (2018) "Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage", Renewable Energy, 128:285-298 doi={https://doi.org/10.1016/j.renene. 2018.05.049}
DOI: 10.1016/j.renene.2018.05.049
Google Scholar
[29]
Boonthum, Eakpoom; Sirichana, Sirichai; Namkhet, Aphainun and Teeboonma, Umphisak (2024), "Comparative Study on Performance of Passive and Active Solar Dryer", Key Engineering Materials 978: 97-103, doi={
DOI: 10.4028/p-2gfc9w
Google Scholar