[1]
A. Szántó, J. Kiss, T. Mankovits and G.Á. Szik, Dynamic test measurements and simulation on a series wound DC motor, Appl. Sci. 11 (2021) 4542.
DOI: 10.3390/app11104542
Google Scholar
[2]
A. Malhotra, A low cost simple solution for reducing starting transient currents in low power DC motors, in: Proc. 2nd Int. Conf. Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India (2019) 220–223.
DOI: 10.1109/peeic47157.2019.8976664
Google Scholar
[3]
N. Brayanov and A. Stoynova, Review of hardware-in-the-loop-a hundred years progress in the pseudo-real testing, Electrotech. Electron. (E+E) 54 (2019).
Google Scholar
[4]
V. Mulka, Hardware in the Loop Simulation for DC Motor, MSc Thesis, University of Huddersfield, West Yorkshire, England, 2016.
Google Scholar
[5]
M.Z. Romdlony and F. Irsyadi, Hardware-in-the-loop simulation of DC motor as an instructional media for control system design and testing, J. Mechatron. Electr. Power Vehic. Technol. 12 (2021) 81–86.
DOI: 10.14203/j.mev.2021.v12.81-86
Google Scholar
[6]
F. Mihalič, M. Truntič and A. Hren, Hardware-in-the-loop simulations: a historical overview of engineering challenges, Electronics 11 (2022) 2462.
DOI: 10.3390/electronics11152462
Google Scholar
[7]
A. Sarikan and M.T. Aydemir, Real time digital simulation (RTDS) software and hardware in the loop (HIL) architecture for brushless DC motors, in: Proc. 15th IEEE Mediterranean Electrotechnical Conf. (MELECON), Valletta, Malta (2010) 779–783.
DOI: 10.1109/melcon.2010.5475971
Google Scholar
[8]
M. Pimentel, Y. Alejaldre, A. Avalos and J. Cerda, A HIL-based DC motor speed control, in: Proc. IEEE Int. Autumn Meeting Power, Electronics and Computing (ROPEC), Ixtapa, Mexico (2018) 1–5.
DOI: 10.1109/ropec.2018.8661369
Google Scholar
[9]
S.P. Biswas, M.K. Hosain and M.W. Rahman, Real-time Arduino based simulator enabled hardware-in-the-loop electric DC machine drive system, in: Proc. IEEE Region 10 Humanitarian Technology Conf. (R10-HTC), Dhaka, Bangladesh (2017) 823–826.
DOI: 10.1109/r10-htc.2017.8289082
Google Scholar
[10]
O.A. Mohammed, N.Y. Abed and S.C. Ganu, Real-time simulations of electrical machine drives with hardware-in-the-loop, in: Proc. IEEE Power Eng. Soc. General Meeting, Tampa, FL, USA (2007) 1–6.
DOI: 10.1109/pes.2007.386269
Google Scholar
[11]
Q. Peng, Y.Q. Guo and H. Sun, Modeling and fault diagnosis of aero-engine lubricating oil system, in: Proc. 37th Chinese Control Conf. (CCC), Wuhan, China (2018) 5907–5912.
DOI: 10.23919/chicc.2018.8482947
Google Scholar
[12]
S. Wenhao, C. Xudong and M. Qiao, A modular design of interface communications for the hardware-in-the-loop simulation in the ground testing system of the Alpha Magnetic Spectrometer, in: Proc. 12th IEEE Int. Conf. Electronic Measurement and Instruments (ICEMI), Zhangjiajie, China (2015) 397–401.
DOI: 10.1109/icemi.2015.7494218
Google Scholar
[13]
M. Schlager, W. Elmenreich and I. Wenzel, Interface design for hardware-in-the-loop simulation, in: Proc. IEEE Int. Symp. Industrial Electronics (ISIE), Montreal, Canada (2006) 1554–1559.
DOI: 10.1109/isie.2006.295703
Google Scholar
[14]
C. Palmer, B. Roullier, M. Aamir, F. McQuade, L. Stella, A. Anjum and U. Diala, Digital twinning remote laboratories for online practical learning, Prod. Manuf. Res. 10 (2022) 519–545.
DOI: 10.1080/21693277.2022.2097140
Google Scholar
[15]
V.M. Babikov, V.V. Makeev and A.Y. Zalozhnev, Information processing, simulation, and math modeling of human operators actions for vessel control system learning and vessel control system interface design, in: Proc. Int. Conf. Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic (2024).
DOI: 10.1109/icecet61485.2024.10698455
Google Scholar
[16]
P.C. Nissimagoudar, V. Mane and N.C. Iyer, Hardware-in-the-loop (HIL) simulation technique for an automotive electronics course, Procedia Comput. Sci. 172 (2020) 1047–1052.
DOI: 10.1016/j.procs.2020.05.153
Google Scholar
[17]
T. Higuchi and H. Suzuki, U.S. Patent Application No. 15/662,624, 2018.
Google Scholar
[18]
S. Nabi, M. Balike, J. Allen and K. Rzemien, An overview of hardware in the loop testing systems at Visteon, SAE Tech. Pap. 2004-01-1240 (2004).
DOI: 10.4271/2004-01-1240
Google Scholar
[19]
J. Peralta, D. Calderon, L. Estrada, J. Ortega, N. Vazquez and C. Limones, Semi-custom HIL simulation of a three-phase power inverter, in: Proc. IEEE Int. Conf. Engineering Veracruz (ICEV), Veracruz, Mexico (2023) 1–6.
DOI: 10.1109/icev59168.2023.10329657
Google Scholar
[20]
F. Kordi, C. Barnard, P. Fortier and A. Miled, Poster: conceptual design for FPGA-based artificial intelligence model for HIL applications, in: Proc. IEEE Symp. Computers and Communications (ISCC), Tunis, Tunisia (2023) 1–3.
DOI: 10.1109/iscc58397.2023.10218294
Google Scholar
[21]
S.S. Sami, Z.A. Obaid, M.T. Muhssin and A.N. Hussain, Detailed modelling and simulation of different DC motor types for research and educational purposes, Int. J. Power Electron. Drive Syst. 12 (2021) 703–714.
DOI: 10.11591/ijpeds.v12.i2.pp703-714
Google Scholar
[22]
M. Baghdadi, E. Elwarraki and I. Ait Ayad, FPGA-based hardware-in-the-loop (HIL) emulation of power electronics circuit using device-level behavioral modeling, Designs 7 (2023) 115.
DOI: 10.3390/designs7050115
Google Scholar
[23]
Q. Zeng, K. Wang, W.X. Liu, J.Z. Zeng, X.L. Li and Q.F. Zhang et al., Efficacy of high-fidelity simulation in advanced life support training: a systematic review and meta-analysis of randomized controlled trials, BMC Med. Educ. 23 (2023) 664.
DOI: 10.1186/s12909-023-04654-x
Google Scholar
[24]
A. Taksale, V. Vaidya, P. Shahane, G. Dronamraju and V. Deulkar, Low cost hardware-in-loop for automotive application, in: Proc. Int. Conf. Industrial Instrumentation and Control (ICIC), Pune, India (2015) 1109–1114.
DOI: 10.1109/iic.2015.7150913
Google Scholar
[25]
D. Thönnessen, N. Reinker, S. Rakel and S. Kowalewski, A concept for PLC hardware-in-the-loop testing using an extension of structured text, in: Proc. 22nd IEEE Int. Conf. Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus (2017) 1–8.
DOI: 10.1109/etfa.2017.8247580
Google Scholar
[26]
E. Toropov, A. Tumasov, A. Vashurin, D. Butin and E. Stepanov, Hardware-in-the-loop testing of vehicle's electronic stability control system, Appl. Eng. Lett. J. Eng. Appl. Sci. 8 (2023) 70–79.
DOI: 10.18485/aeletters.2023.8.2.4
Google Scholar
[27]
B. Mafakheri, P. Gonnella, A. Bazzi, B.M. Masini, M. Caggiano and R. Verdone, Optimizations for hardware-in-the-loop-based V2X validation platforms, in: Proc. IEEE 93rd Vehicular Technology Conf. (VTC2021-Spring), Helsinki, Finland (2021) 1–7.
DOI: 10.1109/vtc2021-spring51267.2021.9448667
Google Scholar
[28]
T. Liang, Z. Huang and V. Dinavahi, Adaptive real-time hybrid neural network-based device-level modeling for DC traction HIL application, IEEE Access 8 (2020) 69543–69556.
DOI: 10.1109/access.2020.2986298
Google Scholar
[29]
R. Roy, Electric vehicle traction motor hardware in loop (HIL) regulation for adaptive cruise control scenario, in: Proc. IEEE 4th Int. Conf. Sustainable Energy and Future Electric Transportation (SEFET), July 2024 (2024) 1–6.
DOI: 10.1109/sefet61574.2024.10718251
Google Scholar
[30]
D.H. Schwartz, Developing a HIL-based Software Platform for Testing Electric and Hybrid Vehicle Powertrains, MSc Thesis, University of Arkansas, 2018.
Google Scholar
[31]
T. Hwang, J. Roh, K. Park, J. Hwang, K.H. Lee, K. Lee et al., Development of HILS systems for active brake control systems, in: Proc. 2006 SICE-ICASE Int. Joint Conf., Busan, Korea (2006) 4404–4408.
DOI: 10.1109/sice.2006.314663
Google Scholar
[32]
H. Yamasaki, T. Matsumoto, K. Itakura, S. Miyamoto and K. Yonemoto, Development of a hardware-in-the-loop simulator and flight simulation of a subscale experimental winged rocket, in: Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics (AIM), Tokyo, Japan (2013) 1510–1515.
DOI: 10.1109/aim.2013.6584309
Google Scholar
[33]
Y. Noda, T. Tsujita, S. Abiko, D. Sato and D.N. Nenchev, HILS using a minimum number of joint module testbeds for analyzing a multi-DoF manipulator, in: Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics (AIM) (2020) 1772–1779.
DOI: 10.1109/aim43001.2020.9158843
Google Scholar
[34]
A. Khang, V.A. Hajimahmud, A.V. Alyar, M.K. Etibar, V.A. Soltanaga and Y. Niu, Machine Vision and Industrial Robotics in Manufacturing, CRC Press, Boca Raton, FL, 2024, p.85–100.
DOI: 10.1201/9781003438137-5
Google Scholar
[35]
J. Lima, P. Costa, T. Brito and L. Piardi, Hardware-in-the-loop simulation approach for the Robot at Factory Lite competition proposal, in: Proc. IEEE Int. Conf. Autonomous Robot Systems and Competitions (ICARSC) (2019) 1–6.
DOI: 10.1109/icarsc.2019.8733649
Google Scholar
[36]
L. Pugi, G. Paolieri, M. Giorgetti, L. Berzi, R. Viviani, L. Cabrucci and L. Bocciolini, HIL testing of wheel slide protection systems: criteria for continuous updating and validation, Rail. Eng. Sci. 31 (2023) 108–121.
DOI: 10.1007/s40534-022-00298-7
Google Scholar
[37]
M. Davidson, H.D. Abbood and A. Benigni, Power hardware in the loop testing of a PV micro-inverter, in: Proc. 6th Int. Conf. Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy (2017) 145–151.
DOI: 10.1109/iccep.2017.8004806
Google Scholar
[38]
M.A. García-Vellisca, C.Q. Gómez Muñoz, M.S. Martínez-García and A. de Castro, Automatic word length selection with boundary conditions for HIL of power converters, Electronics 12 (2023) 3488.
DOI: 10.3390/electronics12163488
Google Scholar
[39]
X. Chen, Y. Sun and K. Wang, Research and realization of local FA test system based on HIL, in: Proc. 5th IEEE Int. Conf. Automation, Electronics and Electrical Engineering (AUTEEE), China (2022) 146–150.
DOI: 10.1109/auteee56487.2022.9994447
Google Scholar
[40]
J. Menezes and T. Sands, Discerning discretization for unmanned underwater vehicles DC motor control, J. Mar. Sci. Eng. 11 (2023) 436.
DOI: 10.3390/jmse11020436
Google Scholar
[41]
S. Wang, B. Link, B. Rosiewicz and H. Yang, Hardware-in-the-loop (HIL) test platform development for seat electronic control unit (ECU) validation, SAE Tech. Pap. 2024-01-2854 (2024).
DOI: 10.4271/2024-01-2854
Google Scholar
[42]
A. Photong, J. Raekriang, T. Prawing, P. Khamphakdi, N. Thongchim and M. Pussayatanont, Electric motor drive toolkits using digital signal processor (DSP) based on hardware-in-the-loop (HIL) technique, in: Proc. IEEE Transp. Electrification Conf. Expo, Asia-Pacific (ITEC Asia-Pacific) (2023) 1–3.
DOI: 10.1109/itecasia-pacific59272.2023.10372195
Google Scholar
[43]
B. Schmitz-Rode, L. Stefanski, R. Schwendemann, S. Decker, S. Mersche, P. Kiehnle and M. Hiller, A modular signal processing platform for grid and motor control, HIL and PHIL applications, in: Proc. Int. Power Electron. Conf. (IPEC-Himeji 2022-ECCE Asia), May 2022 (2022) 1817–1824.
DOI: 10.23919/ipec-himeji2022-ecce53331.2022.9807061
Google Scholar
[44]
C. Antonin, E. Bastien, G. Mevludin and C. Bertrand, A C-HIL based data-driven DC–DC power electronics converter model for system-level studies, in: Proc. IEEE PES Innovative Smart Grid Technol. Europe (ISGT Europe) (2023) 1–5.
DOI: 10.1109/isgteurope56780.2023.10407755
Google Scholar
[45]
M. Mathew and F. Kazi, Hardware-in-loop (HIL) testbed design of thermal power plant for threat modeling and attack vector analysis, Int. J. Crit. Infrastruct. Prot. 45 (2024) 100675.
DOI: 10.1016/j.ijcip.2024.100675
Google Scholar
[46]
A. Schirrer, J. Santos, M. Grujic, J. Zulehner, M. Weichselbaumer, P. Antunes and S. Jakubek, Time delay in a mechatronic power-HIL system: analysis and model-based compensation, Control Eng. Pract. 144 (2024) 105832.
DOI: 10.1016/j.conengprac.2023.105832
Google Scholar
[47]
J. Ihrens, S. Möws, L. Wilkening, T.A. Kern and C. Becker, The impact of time delays for power hardware-in-the-loop investigations, Energies 14 (2021) 3154.
DOI: 10.3390/en14113154
Google Scholar
[48]
T. Lindh, J.H. Montonen, M. Niemelä, J. Nokka, L. Laurila and J. Pyrhönen, Dynamic performance of mechanical-level hardware-in-the-loop simulation, in: Proc. 16th Eur. Conf. Power Electron. Appl. (2014) 1–10.
DOI: 10.1109/epe.2014.6911000
Google Scholar