Low-Cost Hardware-in-the-Loop Simulation: A Literature Review

Article Preview

Abstract:

Over the past twenty years, the integration of electronic and mechatronic systems has become an integral part of human life, revolutionizing the way the world interacts with technology on a daily basis. Here, an important type of simulation emerged, which is Hardware-in-the-Loop (HIL) simulation. The principle of this simulation approach is to integrate real models with simulation, which allows testing of real systems under similar conditions and without any material loss or risk. This paper briefly presents the most important challenges that this construction has faced and the benefits and most important applications of HIL simulation, especially in Direct Current (DC). It also presents to us the most important challenges and potential future directions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-88

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Szántó, J. Kiss, T. Mankovits and G.Á. Szik, Dynamic test measurements and simulation on a series wound DC motor, Appl. Sci. 11 (2021) 4542.

DOI: 10.3390/app11104542

Google Scholar

[2] A. Malhotra, A low cost simple solution for reducing starting transient currents in low power DC motors, in: Proc. 2nd Int. Conf. Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India (2019) 220–223.

DOI: 10.1109/peeic47157.2019.8976664

Google Scholar

[3] N. Brayanov and A. Stoynova, Review of hardware-in-the-loop-a hundred years progress in the pseudo-real testing, Electrotech. Electron. (E+E) 54 (2019).

Google Scholar

[4] V. Mulka, Hardware in the Loop Simulation for DC Motor, MSc Thesis, University of Huddersfield, West Yorkshire, England, 2016.

Google Scholar

[5] M.Z. Romdlony and F. Irsyadi, Hardware-in-the-loop simulation of DC motor as an instructional media for control system design and testing, J. Mechatron. Electr. Power Vehic. Technol. 12 (2021) 81–86.

DOI: 10.14203/j.mev.2021.v12.81-86

Google Scholar

[6] F. Mihalič, M. Truntič and A. Hren, Hardware-in-the-loop simulations: a historical overview of engineering challenges, Electronics 11 (2022) 2462.

DOI: 10.3390/electronics11152462

Google Scholar

[7] A. Sarikan and M.T. Aydemir, Real time digital simulation (RTDS) software and hardware in the loop (HIL) architecture for brushless DC motors, in: Proc. 15th IEEE Mediterranean Electrotechnical Conf. (MELECON), Valletta, Malta (2010) 779–783.

DOI: 10.1109/melcon.2010.5475971

Google Scholar

[8] M. Pimentel, Y. Alejaldre, A. Avalos and J. Cerda, A HIL-based DC motor speed control, in: Proc. IEEE Int. Autumn Meeting Power, Electronics and Computing (ROPEC), Ixtapa, Mexico (2018) 1–5.

DOI: 10.1109/ropec.2018.8661369

Google Scholar

[9] S.P. Biswas, M.K. Hosain and M.W. Rahman, Real-time Arduino based simulator enabled hardware-in-the-loop electric DC machine drive system, in: Proc. IEEE Region 10 Humanitarian Technology Conf. (R10-HTC), Dhaka, Bangladesh (2017) 823–826.

DOI: 10.1109/r10-htc.2017.8289082

Google Scholar

[10] O.A. Mohammed, N.Y. Abed and S.C. Ganu, Real-time simulations of electrical machine drives with hardware-in-the-loop, in: Proc. IEEE Power Eng. Soc. General Meeting, Tampa, FL, USA (2007) 1–6.

DOI: 10.1109/pes.2007.386269

Google Scholar

[11] Q. Peng, Y.Q. Guo and H. Sun, Modeling and fault diagnosis of aero-engine lubricating oil system, in: Proc. 37th Chinese Control Conf. (CCC), Wuhan, China (2018) 5907–5912.

DOI: 10.23919/chicc.2018.8482947

Google Scholar

[12] S. Wenhao, C. Xudong and M. Qiao, A modular design of interface communications for the hardware-in-the-loop simulation in the ground testing system of the Alpha Magnetic Spectrometer, in: Proc. 12th IEEE Int. Conf. Electronic Measurement and Instruments (ICEMI), Zhangjiajie, China (2015) 397–401.

DOI: 10.1109/icemi.2015.7494218

Google Scholar

[13] M. Schlager, W. Elmenreich and I. Wenzel, Interface design for hardware-in-the-loop simulation, in: Proc. IEEE Int. Symp. Industrial Electronics (ISIE), Montreal, Canada (2006) 1554–1559.

DOI: 10.1109/isie.2006.295703

Google Scholar

[14] C. Palmer, B. Roullier, M. Aamir, F. McQuade, L. Stella, A. Anjum and U. Diala, Digital twinning remote laboratories for online practical learning, Prod. Manuf. Res. 10 (2022) 519–545.

DOI: 10.1080/21693277.2022.2097140

Google Scholar

[15] V.M. Babikov, V.V. Makeev and A.Y. Zalozhnev, Information processing, simulation, and math modeling of human operators actions for vessel control system learning and vessel control system interface design, in: Proc. Int. Conf. Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic (2024).

DOI: 10.1109/icecet61485.2024.10698455

Google Scholar

[16] P.C. Nissimagoudar, V. Mane and N.C. Iyer, Hardware-in-the-loop (HIL) simulation technique for an automotive electronics course, Procedia Comput. Sci. 172 (2020) 1047–1052.

DOI: 10.1016/j.procs.2020.05.153

Google Scholar

[17] T. Higuchi and H. Suzuki, U.S. Patent Application No. 15/662,624, 2018.

Google Scholar

[18] S. Nabi, M. Balike, J. Allen and K. Rzemien, An overview of hardware in the loop testing systems at Visteon, SAE Tech. Pap. 2004-01-1240 (2004).

DOI: 10.4271/2004-01-1240

Google Scholar

[19] J. Peralta, D. Calderon, L. Estrada, J. Ortega, N. Vazquez and C. Limones, Semi-custom HIL simulation of a three-phase power inverter, in: Proc. IEEE Int. Conf. Engineering Veracruz (ICEV), Veracruz, Mexico (2023) 1–6.

DOI: 10.1109/icev59168.2023.10329657

Google Scholar

[20] F. Kordi, C. Barnard, P. Fortier and A. Miled, Poster: conceptual design for FPGA-based artificial intelligence model for HIL applications, in: Proc. IEEE Symp. Computers and Communications (ISCC), Tunis, Tunisia (2023) 1–3.

DOI: 10.1109/iscc58397.2023.10218294

Google Scholar

[21] S.S. Sami, Z.A. Obaid, M.T. Muhssin and A.N. Hussain, Detailed modelling and simulation of different DC motor types for research and educational purposes, Int. J. Power Electron. Drive Syst. 12 (2021) 703–714.

DOI: 10.11591/ijpeds.v12.i2.pp703-714

Google Scholar

[22] M. Baghdadi, E. Elwarraki and I. Ait Ayad, FPGA-based hardware-in-the-loop (HIL) emulation of power electronics circuit using device-level behavioral modeling, Designs 7 (2023) 115.

DOI: 10.3390/designs7050115

Google Scholar

[23] Q. Zeng, K. Wang, W.X. Liu, J.Z. Zeng, X.L. Li and Q.F. Zhang et al., Efficacy of high-fidelity simulation in advanced life support training: a systematic review and meta-analysis of randomized controlled trials, BMC Med. Educ. 23 (2023) 664.

DOI: 10.1186/s12909-023-04654-x

Google Scholar

[24] A. Taksale, V. Vaidya, P. Shahane, G. Dronamraju and V. Deulkar, Low cost hardware-in-loop for automotive application, in: Proc. Int. Conf. Industrial Instrumentation and Control (ICIC), Pune, India (2015) 1109–1114.

DOI: 10.1109/iic.2015.7150913

Google Scholar

[25] D. Thönnessen, N. Reinker, S. Rakel and S. Kowalewski, A concept for PLC hardware-in-the-loop testing using an extension of structured text, in: Proc. 22nd IEEE Int. Conf. Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus (2017) 1–8.

DOI: 10.1109/etfa.2017.8247580

Google Scholar

[26] E. Toropov, A. Tumasov, A. Vashurin, D. Butin and E. Stepanov, Hardware-in-the-loop testing of vehicle's electronic stability control system, Appl. Eng. Lett. J. Eng. Appl. Sci. 8 (2023) 70–79.

DOI: 10.18485/aeletters.2023.8.2.4

Google Scholar

[27] B. Mafakheri, P. Gonnella, A. Bazzi, B.M. Masini, M. Caggiano and R. Verdone, Optimizations for hardware-in-the-loop-based V2X validation platforms, in: Proc. IEEE 93rd Vehicular Technology Conf. (VTC2021-Spring), Helsinki, Finland (2021) 1–7.

DOI: 10.1109/vtc2021-spring51267.2021.9448667

Google Scholar

[28] T. Liang, Z. Huang and V. Dinavahi, Adaptive real-time hybrid neural network-based device-level modeling for DC traction HIL application, IEEE Access 8 (2020) 69543–69556.

DOI: 10.1109/access.2020.2986298

Google Scholar

[29] R. Roy, Electric vehicle traction motor hardware in loop (HIL) regulation for adaptive cruise control scenario, in: Proc. IEEE 4th Int. Conf. Sustainable Energy and Future Electric Transportation (SEFET), July 2024 (2024) 1–6.

DOI: 10.1109/sefet61574.2024.10718251

Google Scholar

[30] D.H. Schwartz, Developing a HIL-based Software Platform for Testing Electric and Hybrid Vehicle Powertrains, MSc Thesis, University of Arkansas, 2018.

Google Scholar

[31] T. Hwang, J. Roh, K. Park, J. Hwang, K.H. Lee, K. Lee et al., Development of HILS systems for active brake control systems, in: Proc. 2006 SICE-ICASE Int. Joint Conf., Busan, Korea (2006) 4404–4408.

DOI: 10.1109/sice.2006.314663

Google Scholar

[32] H. Yamasaki, T. Matsumoto, K. Itakura, S. Miyamoto and K. Yonemoto, Development of a hardware-in-the-loop simulator and flight simulation of a subscale experimental winged rocket, in: Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics (AIM), Tokyo, Japan (2013) 1510–1515.

DOI: 10.1109/aim.2013.6584309

Google Scholar

[33] Y. Noda, T. Tsujita, S. Abiko, D. Sato and D.N. Nenchev, HILS using a minimum number of joint module testbeds for analyzing a multi-DoF manipulator, in: Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics (AIM) (2020) 1772–1779.

DOI: 10.1109/aim43001.2020.9158843

Google Scholar

[34] A. Khang, V.A. Hajimahmud, A.V. Alyar, M.K. Etibar, V.A. Soltanaga and Y. Niu, Machine Vision and Industrial Robotics in Manufacturing, CRC Press, Boca Raton, FL, 2024, p.85–100.

DOI: 10.1201/9781003438137-5

Google Scholar

[35] J. Lima, P. Costa, T. Brito and L. Piardi, Hardware-in-the-loop simulation approach for the Robot at Factory Lite competition proposal, in: Proc. IEEE Int. Conf. Autonomous Robot Systems and Competitions (ICARSC) (2019) 1–6.

DOI: 10.1109/icarsc.2019.8733649

Google Scholar

[36] L. Pugi, G. Paolieri, M. Giorgetti, L. Berzi, R. Viviani, L. Cabrucci and L. Bocciolini, HIL testing of wheel slide protection systems: criteria for continuous updating and validation, Rail. Eng. Sci. 31 (2023) 108–121.

DOI: 10.1007/s40534-022-00298-7

Google Scholar

[37] M. Davidson, H.D. Abbood and A. Benigni, Power hardware in the loop testing of a PV micro-inverter, in: Proc. 6th Int. Conf. Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy (2017) 145–151.

DOI: 10.1109/iccep.2017.8004806

Google Scholar

[38] M.A. García-Vellisca, C.Q. Gómez Muñoz, M.S. Martínez-García and A. de Castro, Automatic word length selection with boundary conditions for HIL of power converters, Electronics 12 (2023) 3488.

DOI: 10.3390/electronics12163488

Google Scholar

[39] X. Chen, Y. Sun and K. Wang, Research and realization of local FA test system based on HIL, in: Proc. 5th IEEE Int. Conf. Automation, Electronics and Electrical Engineering (AUTEEE), China (2022) 146–150.

DOI: 10.1109/auteee56487.2022.9994447

Google Scholar

[40] J. Menezes and T. Sands, Discerning discretization for unmanned underwater vehicles DC motor control, J. Mar. Sci. Eng. 11 (2023) 436.

DOI: 10.3390/jmse11020436

Google Scholar

[41] S. Wang, B. Link, B. Rosiewicz and H. Yang, Hardware-in-the-loop (HIL) test platform development for seat electronic control unit (ECU) validation, SAE Tech. Pap. 2024-01-2854 (2024).

DOI: 10.4271/2024-01-2854

Google Scholar

[42] A. Photong, J. Raekriang, T. Prawing, P. Khamphakdi, N. Thongchim and M. Pussayatanont, Electric motor drive toolkits using digital signal processor (DSP) based on hardware-in-the-loop (HIL) technique, in: Proc. IEEE Transp. Electrification Conf. Expo, Asia-Pacific (ITEC Asia-Pacific) (2023) 1–3.

DOI: 10.1109/itecasia-pacific59272.2023.10372195

Google Scholar

[43] B. Schmitz-Rode, L. Stefanski, R. Schwendemann, S. Decker, S. Mersche, P. Kiehnle and M. Hiller, A modular signal processing platform for grid and motor control, HIL and PHIL applications, in: Proc. Int. Power Electron. Conf. (IPEC-Himeji 2022-ECCE Asia), May 2022 (2022) 1817–1824.

DOI: 10.23919/ipec-himeji2022-ecce53331.2022.9807061

Google Scholar

[44] C. Antonin, E. Bastien, G. Mevludin and C. Bertrand, A C-HIL based data-driven DC–DC power electronics converter model for system-level studies, in: Proc. IEEE PES Innovative Smart Grid Technol. Europe (ISGT Europe) (2023) 1–5.

DOI: 10.1109/isgteurope56780.2023.10407755

Google Scholar

[45] M. Mathew and F. Kazi, Hardware-in-loop (HIL) testbed design of thermal power plant for threat modeling and attack vector analysis, Int. J. Crit. Infrastruct. Prot. 45 (2024) 100675.

DOI: 10.1016/j.ijcip.2024.100675

Google Scholar

[46] A. Schirrer, J. Santos, M. Grujic, J. Zulehner, M. Weichselbaumer, P. Antunes and S. Jakubek, Time delay in a mechatronic power-HIL system: analysis and model-based compensation, Control Eng. Pract. 144 (2024) 105832.

DOI: 10.1016/j.conengprac.2023.105832

Google Scholar

[47] J. Ihrens, S. Möws, L. Wilkening, T.A. Kern and C. Becker, The impact of time delays for power hardware-in-the-loop investigations, Energies 14 (2021) 3154.

DOI: 10.3390/en14113154

Google Scholar

[48] T. Lindh, J.H. Montonen, M. Niemelä, J. Nokka, L. Laurila and J. Pyrhönen, Dynamic performance of mechanical-level hardware-in-the-loop simulation, in: Proc. 16th Eur. Conf. Power Electron. Appl. (2014) 1–10.

DOI: 10.1109/epe.2014.6911000

Google Scholar