[1]
M. Jabari, S. Ekinci, D. Izci, M. Bajaj and I. Zaitsev, Efficient DC motor speed control using a novel multi-stage FOPD(1 + PI) controller optimized by the Pelican optimization algorithm, Sci. Rep. 14 (2024) 22442.
DOI: 10.1038/s41598-024-73409-5
Google Scholar
[2]
A.F. Güven, Ö.Ö. Mengi, M.A. Elseify and S. Kamel, Comprehensive optimization of PID controller parameters for DC motor speed management using a modified jellyfish search algorithm, Optim. Control Appl. Methods 46 (2025) 320–342.
DOI: 10.1002/oca.3218
Google Scholar
[3]
Y.B. Koca, Y. Aslan and B. Gökçe, Speed control based PID configuration of a DC motor for an unmanned agricultural vehicle, in: Proc. 8th Int. Conf. Electr. Electron. Eng. (ICEEE) (2021) 117–120.
DOI: 10.1109/iceee52452.2021.9415908
Google Scholar
[4]
X. Yang, W. Ge and Y. Wang, Design and application of parameter self-tuning regulator for DC motor based on neural network, Scalable Comput.: Pract. Exp. 25 (2024) 4825–4835.
DOI: 10.12694/scpe.v25i6.3301
Google Scholar
[5]
M. Munadi, M.A. Akbar, T. Naniwa and Y. Taniai, Model reference adaptive control for DC motor based on Simulink, in: Proc. 6th Int. Annu. Eng. Seminar (InAES) (2016) 1–6.
DOI: 10.1109/inaes.2016.7821915
Google Scholar
[6]
Y. Guo and M.E.A. Mohamed, Speed control of direct current motor using ANFIS based hybrid P-I-D configuration controller, IEEE Access 8 (2020) 125638–125647.
DOI: 10.1109/access.2020.3007615
Google Scholar
[7]
B. Hekimoğlu, Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm, IEEE Access 7 (2019) 38100–38114.
DOI: 10.1109/access.2019.2905961
Google Scholar
[8]
S.B. Joseph, E.G. Dada, A. Abidemi, D.O. Oyewola and B.M. Khammas, Metaheuristic algorithms for PID controller parameters tuning: review, approaches and open problems, Heliyon 8 (2022) e09399.
DOI: 10.1016/j.heliyon.2022.e09399
Google Scholar
[9]
O. Rodríguez-Abreo, J. Rodríguez-Reséndiz, C. Fuentes-Silva, R. Hernández-Alvarado and M.D.C.P. Torres Falcón, Self-tuning neural network PID with dynamic response control, IEEE Access 9 (2021) 65206–65215.
DOI: 10.1109/access.2021.3075452
Google Scholar
[10]
M.M. Gani, M.S. Islam and M.A. Ullah, Modeling and designing a genetically optimized PID controller for separately excited DC motor, in: Proc. Int. Conf. Electr., Comput. Commun. Eng. (ECCE) (2019) 1–6.
DOI: 10.1109/ecace.2019.8679276
Google Scholar
[11]
A.I. Tajudin, M.A.D. Izani, A.A.A. Samat, S. Omar and M.A.M. Idin, Design a speed control for DC motor using an optimal PID controller implementation of ABC algorithm, in: Proc. IEEE Int. Conf. Control Syst. Comput. Eng. (ICCSCE) (2022) 97–102.
DOI: 10.1109/iccsce54767.2022.9935644
Google Scholar
[12]
R.S. Patil, S.P. Jadhav and M.D. Patil, Review of intelligent and nature-inspired algorithms-based methods for tuning PID controllers in industrial applications, J. Robot. Control 5 (2024) 336–350.
DOI: 10.18196/jrc.v5i2.20850
Google Scholar
[13]
W. Aribowo, Supari and B. Suprianto, Optimization of PID parameters for controlling DC motor based on the Aquila optimizer algorithm, Int. J. Power Electron. Drive Syst. 13 (2022) 216–222.
DOI: 10.11591/ijpeds.v13.i1.pp216-222
Google Scholar
[14]
B.B. Acharya, S. Dhakal, A. Bhattarai and N. Bhattarai, PID speed control of DC motor using meta-heuristic algorithms, Int. J. Power Electron. Drive Syst. 12 (2021) 822–831.
DOI: 10.11591/ijpeds.v12.i2.pp822-831
Google Scholar
[15]
R.S.A. Ali and M.K. Ibrahim, Novel optimization algorithm inspired by camel traveling behavior, Iraq J. Electr. Electron. Eng. 12 (2016) 167–177.
DOI: 10.33762/eeej.2016.118375
Google Scholar
[16]
M.F. Demiral, Heuristics in labor management: An application of modified camel algorithm, Pamukkale J. Eurasian Socioecon. Stud. 11 (2024) 37–48.
DOI: 10.34232/pjess.1498652
Google Scholar
[17]
R.S. Ali, F.M. Alnahwi and A.S. Abdullah, A modified camel travelling behaviour algorithm for engineering applications, Aust. J. Electr. Electron. Eng. 17 (2019) 233–246.
Google Scholar
[18]
K.M. Omran, B.H. Jasim and K.H. Hassan, Optimum speed controller structure utilizing the MCA approach, Bull. Electr. Eng. Inform. 10 (2021) 640–649.
DOI: 10.11591/eei.v10i2.2733
Google Scholar
[19]
S.K. Pandey, C. Bera and S.S. Dwivedi, Design of robust PID controller for DC Motor using TLBO algorithm, in: Proc. IEEE Int. Conf. Adv. Dev. Electr. Electron. Eng. (ICADEE) (2020) 1–6.
DOI: 10.1109/icadee51157.2020.9368952
Google Scholar
[20]
R. Nutenki and B.V. Varma, PID controller design for DC motor speed control, in: Proc. 4th Int. Conf. Adv. Electr., Comput., Commun. Sustain. Technol. (ICAECT) (2024) 1–6.
DOI: 10.1109/icaect60202.2024.10469124
Google Scholar
[21]
H. Supriyono, F.F. Alanro and A. Supardi, Development of DC motor speed control using PID based on Arduino and Matlab for laboratory trainer, J. Nas. Tek. Elektro 13 (2024) 37–41.
DOI: 10.25077/jnte.v13n1.1155.2024
Google Scholar
[22]
R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control, Prentice Hall, 2001.
Google Scholar
[23]
S.S. Sami, Z.A. Obaid, M.T. Muhssin and A.N. Hussain, Detailed modelling and simulation of different DC motor types for research and educational purposes, Int. J. Power Electron. Drive Syst. 12 (2021) 703–714.
DOI: 10.11591/ijpeds.v12.i2.pp703-714
Google Scholar
[24]
Q. Ariyansyah and A. Ma'arif, DC motor speed control with proportional integral derivative (PID) control on the prototype of a mini-submarine, J. Fuzzy Syst. Control 1 (2023) 18–24.
DOI: 10.59247/jfsc.v1i1.26
Google Scholar
[25]
S.A. Aessa, S.W. Shneen and M.K. Oudah, Optimizing PID controller for large-scale MIMO systems using flower pollination algorithm, J. Robot. Control 6 (2025) 553–559.
DOI: 10.18196/jrc.v6i2.24409
Google Scholar
[26]
S.M. Dawood, S.H. Majeed and H.J. Nekad, PID controller based multiple (master/slaves) permanent magnet synchronous motors speed control, Iraq J. Electr. Electron. Eng. 11 (2015) 22.
DOI: 10.37917/ijeee.11.2.5
Google Scholar
[27]
R.P. Borase, D.K. Maghade, S.Y. Sondkar and S.N. Pawar, A review of PID control, tuning methods and applications, Int. J. Dyn. Control 10 (2022) 1041–1062.
DOI: 10.1007/s40435-020-00665-4
Google Scholar
[28]
A.K. Naik, S.K. Kar and B.K. Sahu, Speed control of DC motor using linear and non-linear controllers, in: Proc. 1st Odisha Int. Conf. Electr. Power Eng., Commun. Comput. Technol. (ODICON) (2021) 1–6.
DOI: 10.1109/odicon50556.2021.9428996
Google Scholar
[29]
H.J. Nekad, D.K. Shary and M.A. Alawan, Position control of linear synchronous reluctance motor using a modified camel traveling algorithm-based proportional integral controller, Math. Model. Eng. Probl. 11 (2024) 1585–1592.
DOI: 10.18280/mmep.110619
Google Scholar
[30]
I. Husnaini, K. Krismadinata, A. Asnil and H. Hastuti, PI and PID controller design and analysis for DC shunt motor speed control, Int. J. Recent Technol. Eng. 8 (2019) 144–150.
DOI: 10.35940/ijrte.c6521.118419
Google Scholar
[31]
J. Kennedy and R. Eberhart, Particle swarm optimization, in: Proc. IEEE Int. Conf. Neural Networks (ICNN) (1995) 1942–1948.
DOI: 10.1109/icnn.1995.488968
Google Scholar
[32]
A. Askarzadeh, A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm, Comput. Struct. 169 (2016) 1–12.
DOI: 10.1016/j.compstruc.2016.03.001
Google Scholar
[33]
R.S. Ali, J.R. Mahmood and H.M. Badr, A new version of modified camel algorithm for engineering applications, in: Proc. Int. Conf. Design, Innovation and Sustainable Technologies (IMDC-IST) (2021).
DOI: 10.4108/eai.7-9-2021.2314874
Google Scholar
[34]
R.V. Rao, V.J. Savsani and D.P. Vakharia, Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput.-Aided Des. 43 (2011) 303–315.
DOI: 10.1016/j.cad.2010.12.015
Google Scholar
[35]
D. Wu, S. Wang, Q. Liu, L. Abualigah and H. Jia, An improved teaching-learning-based optimization algorithm with reinforcement learning strategy for solving optimization problems, Comput. Intell. Neurosci. 2022 (2022) Article ID 1535957.
DOI: 10.1155/2022/1535957
Google Scholar
[36]
D. Qu, S. Liu, D. Zhang, J. Wang and C. Gao, Teaching-learning based optimization algorithm based on course by course improvement, in: Proc. 11th Int. Conf. Comput. Intell. Secur. (CIS) (2015) 48–52.
DOI: 10.1109/cis.2015.20
Google Scholar
[37]
N.L. Manuel, N. İnanç and M. Lüy, Control and performance analyses of a DC motor using optimized PIDs and fuzzy logic controller, Results Control Optim. 13 (2023) 100306.
DOI: 10.1016/j.rico.2023.100306
Google Scholar
[38]
S. Ekinci, B. Hekimoğlu and D. Izci, Opposition based Henry gas solubility optimization as a novel algorithm for PID control of DC motor, Eng. Sci. Technol. Int. J. 24 (2021) 331–342.
DOI: 10.1016/j.jestch.2020.08.011
Google Scholar
[39]
I. Khanam and G. Parmar, Application of SFS algorithm in control of DC motor and comparative analysis, in: Proc. 4th IEEE Uttar Pradesh Sect. Int. Conf. Electr. Comput. Electron. (UPCON) (2017) 256–261.
DOI: 10.1109/upcon.2017.8251057
Google Scholar
[40]
S. Ekinci, B. Hekimoğlu, A. Demiroren and E. Eker, Speed control of DC motor using improved sine cosine algorithm based PID controller, in: Proc. Int. Symp. Multidiscip. Stud. Innov. Technol. (ISMSIT) (2019) 1–5.
DOI: 10.1109/ismsit.2019.8932907
Google Scholar