Temperature Sensors Based on One-Dimensional Superconducting Photonic Crystal

Article Preview

Abstract:

In this study, we investigate the sensitive photonic crystal sensor formed by the coupling between two photonic crystals containing a superconducting layer. We consider TE polarization and normal incidence for the analysis presented in this work. Our study shows that the cavity mode resulting from this coupling is strongly dependent on the temperature of the superconductor layer. The effect of the temperature of the superconducting layer and thicknesses on the quality factor is examined. The results show that the sensor superconducting structure gives a high quality factor. This structure can be used to realize a highly sensitive photonic crystal sensor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett.58, (1987).

DOI: 10.1103/physrevlett.58.2486

Google Scholar

[2] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, (1987).

DOI: 10.1103/physrevlett.58.2059

Google Scholar

[3] Sepahvandi, V., B. Rezaei, and A. H. Aly. Tunable multichannel Fibonacci one-dimensional terahertz photonic crystal filter. Scientific Reports 13.1 (2023): 5631.

DOI: 10.1038/s41598-023-32769-0

Google Scholar

[4] Gryga, M., Ciprian, D., Gembalova, L., & Hlubina, P. (2023). One-dimensional photonic crystal with a defect layer utilized as an optical filter in narrow linewidth LED-based sources. Crystals, 13(1), 93.

DOI: 10.3390/cryst13010093

Google Scholar

[5] Erol, A. E., & Sözüer, H. S. (2015). High transmission through a 90° bend in a polarization-independent single-mode photonic crystal waveguide. Optics Express, 23(25), 32690-32695.

DOI: 10.1364/oe.23.032690

Google Scholar

[6] Mir, A., Akjouj, A., El Boudouti, E. H., Djafari-Rouhani, B., & Dobrzynski, L. (2001). Large omnidirectional band gaps and selective transmission in one-dimensional multilayer photonic structures. Vacuum, 63(1-2), 197-203.

DOI: 10.1016/s0042-207x(01)00191-9

Google Scholar

[7] Hao, J. J., Gu, K. D., Xia, L., Liu, Y. J., Yang, Z. F., & Yang, H. W. (2020). Research on low-temperature blood tissues detection biosensor based on one-dimensional superconducting photonic crystal. Communications in Nonlinear Science and Numerical Simulation, 89, 105299.

DOI: 10.1016/j.cnsns.2020.105299

Google Scholar

[8] El Abouti, O., El Boudouti, E. H., El Hassouani, Y., Noual, A., & Djafari-Rouhani, B. (2016). Optical Tamm states in one-dimensional superconducting photonic crystal. Physics of Plasmas, 23(8).

DOI: 10.1063/1.4960983

Google Scholar

[9] Hao, J. J., Gu, K. D., Xia, L., Liu, Y. J., Yang, Z. F., & Yang, H. W. (2020). Research on low-temperature blood tissues detection biosensor based on one-dimensional superconducting photonic crystal. Communications in Nonlinear Science and Numerical Simulation, 89, 105299.

DOI: 10.1016/j.cnsns.2020.105299

Google Scholar

[10] Panda, A., Pukhrambam, P. D., Ayyanar, N., & Nguyen, T. K. (2021). Investigation of transmission properties in defective one dimensional superconductive photonic crystal for ultralow level bioethanol detection. Optik, 245, 167733.

DOI: 10.1016/j.ijleo.2021.167733

Google Scholar

[11] Herrera, A. Y., Calero, J. M., & Porras-Montenegro, N. (2018). Pressure, temperature, and thickness dependence of transmittance in a 1D superconductor-semiconductor photonic crystal. Journal of Applied Physics, 123(3).

DOI: 10.1063/1.5009708

Google Scholar

[12] T. Van Duzer and C. W. Turner, Principlesof Superconductive Devicesand Circuits (Edward Arnold, London, 1981),Chap. 3.

Google Scholar

[13] Yeh, P., & Hendry, M. (1990). Optical waves in layered media.

Google Scholar

[14] Suthar, B., & Bhargava, A. (2012). Enlargement of omni-directional reflection by cascading chalcogenide based photonic crystals. Optics Communications, 285(6), 1481-1485.

DOI: 10.1016/j.optcom.2011.10.033

Google Scholar

[15] Caroselli, R., Martin Sanchez, D., Ponce Alcantara, S., Prats Quilez, F., Torrijos Moran, L., & García-Rupérez, J. (2017). Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor. Sensors, 17(12), 2813.

DOI: 10.3390/s17122813

Google Scholar

[16] Aly, A. H., Awasthi, S. K., Mohamed, D., Matar, Z. S., Al-Dossari, M., & Amin, A. F. (2021). Study on a one-dimensional defective photonic crystal suitable for organic compound sensing applications. RSC advances, 11(52), 32973-32980.

DOI: 10.1039/d1ra06513k

Google Scholar

[17] Luz E. Gonzalez1, J.E. Ordonez, G. Zambrano,N.Porras-Montenegro, YBa2Cu3O7-x/BaTiO3 1D superconducting photonic crystal with tunable broadbandresponse in the visible range, J. Supercond. Nov. Magn. 31, 2003-2009 (2018).

DOI: 10.1007/s10948-017-4427-4

Google Scholar

[18] Soltani, A., et al. "Comparative study of one-dimensional photonic crystal heterostructure doped with a high and low-transition temperature superconducting for a low-temperature sensor." Optics Communications 445 (2019): 268-272.

DOI: 10.1016/j.optcom.2019.04.056

Google Scholar

[19] Segovia-Chaves, Francis, Herbert Vinck-Posada, and Edgar A. Gómez. "Superconducting one-dimensional photonic crystal with coupled semiconductor defects." Optik 209 (2020): 164572.

DOI: 10.1016/j.ijleo.2020.164572

Google Scholar

[20] Aly, Arafa H., et al. "A temperature sensor based on Si/PS/SiO2 photonic crystals." Scientific Reports 13.1 (2023): 21560.

DOI: 10.1038/s41598-023-48836-5

Google Scholar