[1]
S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett.58, (1987).
DOI: 10.1103/physrevlett.58.2486
Google Scholar
[2]
E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, (1987).
DOI: 10.1103/physrevlett.58.2059
Google Scholar
[3]
Sepahvandi, V., B. Rezaei, and A. H. Aly. Tunable multichannel Fibonacci one-dimensional terahertz photonic crystal filter. Scientific Reports 13.1 (2023): 5631.
DOI: 10.1038/s41598-023-32769-0
Google Scholar
[4]
Gryga, M., Ciprian, D., Gembalova, L., & Hlubina, P. (2023). One-dimensional photonic crystal with a defect layer utilized as an optical filter in narrow linewidth LED-based sources. Crystals, 13(1), 93.
DOI: 10.3390/cryst13010093
Google Scholar
[5]
Erol, A. E., & Sözüer, H. S. (2015). High transmission through a 90° bend in a polarization-independent single-mode photonic crystal waveguide. Optics Express, 23(25), 32690-32695.
DOI: 10.1364/oe.23.032690
Google Scholar
[6]
Mir, A., Akjouj, A., El Boudouti, E. H., Djafari-Rouhani, B., & Dobrzynski, L. (2001). Large omnidirectional band gaps and selective transmission in one-dimensional multilayer photonic structures. Vacuum, 63(1-2), 197-203.
DOI: 10.1016/s0042-207x(01)00191-9
Google Scholar
[7]
Hao, J. J., Gu, K. D., Xia, L., Liu, Y. J., Yang, Z. F., & Yang, H. W. (2020). Research on low-temperature blood tissues detection biosensor based on one-dimensional superconducting photonic crystal. Communications in Nonlinear Science and Numerical Simulation, 89, 105299.
DOI: 10.1016/j.cnsns.2020.105299
Google Scholar
[8]
El Abouti, O., El Boudouti, E. H., El Hassouani, Y., Noual, A., & Djafari-Rouhani, B. (2016). Optical Tamm states in one-dimensional superconducting photonic crystal. Physics of Plasmas, 23(8).
DOI: 10.1063/1.4960983
Google Scholar
[9]
Hao, J. J., Gu, K. D., Xia, L., Liu, Y. J., Yang, Z. F., & Yang, H. W. (2020). Research on low-temperature blood tissues detection biosensor based on one-dimensional superconducting photonic crystal. Communications in Nonlinear Science and Numerical Simulation, 89, 105299.
DOI: 10.1016/j.cnsns.2020.105299
Google Scholar
[10]
Panda, A., Pukhrambam, P. D., Ayyanar, N., & Nguyen, T. K. (2021). Investigation of transmission properties in defective one dimensional superconductive photonic crystal for ultralow level bioethanol detection. Optik, 245, 167733.
DOI: 10.1016/j.ijleo.2021.167733
Google Scholar
[11]
Herrera, A. Y., Calero, J. M., & Porras-Montenegro, N. (2018). Pressure, temperature, and thickness dependence of transmittance in a 1D superconductor-semiconductor photonic crystal. Journal of Applied Physics, 123(3).
DOI: 10.1063/1.5009708
Google Scholar
[12]
T. Van Duzer and C. W. Turner, Principlesof Superconductive Devicesand Circuits (Edward Arnold, London, 1981),Chap. 3.
Google Scholar
[13]
Yeh, P., & Hendry, M. (1990). Optical waves in layered media.
Google Scholar
[14]
Suthar, B., & Bhargava, A. (2012). Enlargement of omni-directional reflection by cascading chalcogenide based photonic crystals. Optics Communications, 285(6), 1481-1485.
DOI: 10.1016/j.optcom.2011.10.033
Google Scholar
[15]
Caroselli, R., Martin Sanchez, D., Ponce Alcantara, S., Prats Quilez, F., Torrijos Moran, L., & García-Rupérez, J. (2017). Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor. Sensors, 17(12), 2813.
DOI: 10.3390/s17122813
Google Scholar
[16]
Aly, A. H., Awasthi, S. K., Mohamed, D., Matar, Z. S., Al-Dossari, M., & Amin, A. F. (2021). Study on a one-dimensional defective photonic crystal suitable for organic compound sensing applications. RSC advances, 11(52), 32973-32980.
DOI: 10.1039/d1ra06513k
Google Scholar
[17]
Luz E. Gonzalez1, J.E. Ordonez, G. Zambrano,N.Porras-Montenegro, YBa2Cu3O7-x/BaTiO3 1D superconducting photonic crystal with tunable broadbandresponse in the visible range, J. Supercond. Nov. Magn. 31, 2003-2009 (2018).
DOI: 10.1007/s10948-017-4427-4
Google Scholar
[18]
Soltani, A., et al. "Comparative study of one-dimensional photonic crystal heterostructure doped with a high and low-transition temperature superconducting for a low-temperature sensor." Optics Communications 445 (2019): 268-272.
DOI: 10.1016/j.optcom.2019.04.056
Google Scholar
[19]
Segovia-Chaves, Francis, Herbert Vinck-Posada, and Edgar A. Gómez. "Superconducting one-dimensional photonic crystal with coupled semiconductor defects." Optik 209 (2020): 164572.
DOI: 10.1016/j.ijleo.2020.164572
Google Scholar
[20]
Aly, Arafa H., et al. "A temperature sensor based on Si/PS/SiO2 photonic crystals." Scientific Reports 13.1 (2023): 21560.
DOI: 10.1038/s41598-023-48836-5
Google Scholar