[1]
P.A. Commins, J.W. Moscrop, C.D. Cook, Synchronous reluctance tubular linear motor for high precision applications, in: Proc. 2015 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, Australia: IEEE, 2015, p.1–6.
DOI: 10.1109/aupec.2015.7324852
Google Scholar
[2]
J. Chowdhury, G. Kumar, K. Kalita, K. Tammi, S.K. Kakoty, A review on linear switched reluctance motor, Rakenteiden Mekaniikka 50 (2017) 261–270.
DOI: 10.23998/rm.65121
Google Scholar
[3]
H.-K. Bae, B.-S. Lee, P. Vijayraghavan, R. Krishnan, A linear switched reluctance motor: converter and control, IEEE Trans. Ind. Appl. 36 (2000) 1351–1359.
DOI: 10.1109/28.871284
Google Scholar
[4]
W.-C. Gan, N.C. Cheung, Design of a linear switched reluctance motor for high precision applications, in: IEMDC 2001 IEEE Int. Electr. Mach. Drives Conf. (Cat. No. 01EX485), Chicago, USA: IEEE, 2001, p.701–704.
DOI: 10.1109/iemdc.2001.939390
Google Scholar
[5]
W.-C. Gan, N.C. Cheung, L. Qiu, Position control of linear switched reluctance motors for high-precision applications, IEEE Trans. Ind. Appl. 39 (2003) 1350–1362.
DOI: 10.1109/tia.2003.816502
Google Scholar
[6]
G. Baoming, A.T. de Almeida, F.J. Ferreira, Design of transverse flux linear switched reluctance motor, IEEE Trans. Magn. 45 (2009) 113–119.
DOI: 10.1109/tmag.2008.2006193
Google Scholar
[7]
L. Szabó, I. Benţia, M. Ruba, A rotary-linear switched reluctance motor for automotive applications, in: Proc. 2012 XXth Int. Conf. Electr. Mach., Vilamoura, Portugal: IEEE, 2012, p.2615–2621.
DOI: 10.1109/icelmach.2012.6350254
Google Scholar
[8]
W.-C. Gan, N.C. Cheung, Development and control of a low-cost linear variable-reluctance motor for precision manufacturing automation, IEEE/ASME Trans. Mechatronics 8 (2003) 326–333.
DOI: 10.1109/tmech.2003.816827
Google Scholar
[9]
L. Qiu, Y. Shi, J. Pan, G. Xu, Networked H∞ controller design for a direct-drive linear motion control system, IEEE Trans. Ind. Electron. 63 (2016) 6281–6291.
DOI: 10.1109/tie.2016.2571263
Google Scholar
[10]
R. Pupadubsin, et al., Position control of a linear variable reluctance motor with magnetically coupled phases, in: ECTI-CON2010: The 2010 ECTI Int. Conf. Electr. Eng./Electron., Comput., Telecommun. Inf. Technol., Chiang Mai, Thailand: IEEE, 2010, p.1031–1035.
DOI: 10.37936/ecti-eec.201191.172479
Google Scholar
[11]
S.-Y. Chen, H.-H. Chiang, T.-S. Liu, C.-H. Chang, Precision motion control of permanent magnet linear synchronous motors using adaptive fuzzy fractional-order sliding-mode control, IEEE/ASME Trans. Mechatronics 24 (2019) 741–752.
DOI: 10.1109/tmech.2019.2892401
Google Scholar
[12]
S. Wang, Z. Wu, D. Peng, W. Li, Y. Zheng, Embedded position estimation using tunnel magnetoresistance sensors for permanent magnet linear synchronous motor systems, Measurement 147 (2019) 106860.
DOI: 10.1016/j.measurement.2019.106860
Google Scholar
[13]
H.J. Nekad, D.K. Shary, M.A. Alawan, Position control of linear synchronous reluctance motor using a modified camel traveling algorithm-based proportional integral controller, Mathematical Modelling of Engineering Problems 11 (6) (2024).
DOI: 10.18280/mmep.110619
Google Scholar
[14]
B.C. Murphy, Design and construction of a precision tubular linear motor and controller, Thesis, Texas A&M University, 2004.
Google Scholar
[15]
A. Hamler, M. Trlep, B. Hribernik, Optimal secondary segment shapes of linear reluctance motors using stochastic searching, IEEE Trans. Magn. 34 (2002) 3519–3521.
DOI: 10.1109/20.717830
Google Scholar
[16]
S. Li, K.W.E. Cheng, N. Cheung, Y. Zou, Design and control of a decoupled rotary-linear switched reluctance motor, IEEE Trans. Energy Conversion 33 (2018) 1363–1371.
DOI: 10.1109/tec.2018.2815564
Google Scholar
[17]
H.M. El-Touni, M.K. El-Nemr, E.E.M. Rashad, Thrust force characteristics of permanent-magnet-assisted linear synchronous reluctance machines using finite element analysis, in: 2018 Twentieth Int. Middle East Power Systems Conf. (MEPCON), Cairo, Egypt: IEEE, 2018, p.998–1003.
DOI: 10.1109/mepcon.2018.8635235
Google Scholar
[18]
G. Stumberger, B. Stumberger, D. Dolinar, Analysis of cross-saturation effects in a linear synchronous reluctance motor performed by finite elements method and measurements, in: 2006 12th Int. Power Electronics and Motion Control Conf., Portoroz, Slovenia: IEEE, 2006, p.1907–1912.
DOI: 10.1109/epepemc.2006.4778684
Google Scholar
[19]
H.J. Ali, H.D. Almukhtar, D.K. Shary, Speed control of brushless DC motor based on online neural-PID controller, in: Proc. Cognitive Models and Artificial Intelligence Conf., Baghdad, Iraq, 2024, p.67–74.
DOI: 10.1145/3660853.3660869
Google Scholar
[20]
M.A. Alawan, A.N.N. Al–Subeeh, O.J.M. Al-Furaiji, Simulating an induction motor multi-operating point speed control using PI controller with neural network, Periodicals of Engineering and Natural Sciences (PEN) 7 (2019) 1478–1485.
DOI: 10.21533/pen.v7i3.784
Google Scholar
[21]
N. Kunjittipong, K. Kongkanjana, S. Khwan-on, Comparison of fuzzy controller and PI controller for a high step-up single-switch boost converter, in: 2020 3rd Int. Conf. Power and Energy Applications (ICPEA), Bangkok, Thailand: IEEE, 2020, p.94–98.
DOI: 10.1109/icpea49807.2020.9280118
Google Scholar
[22]
S.I. Azid, V.P. Shankaran, U. Mehta, Fractional PI controller for integrating plants, in: 2020 16th Int. Conf. Control, Automation, Robotics and Vision (ICARCV), Singapore: IEEE, 2020, p.904–909.
DOI: 10.1109/icarcv50220.2020.9305506
Google Scholar
[23]
N. Bounasla, S. Barkat, Optimum design of fractional order PIα speed controller for predictive direct torque control of a sensorless five-phase Permanent Magnet Synchronous Machine (PMSM), Journal Européen des Systèmes Automatisés 53 (2020) 437–449.
DOI: 10.18280/jesa.530401
Google Scholar
[24]
W. Altalabani, Y. Alaiwi, Optimized Adaptive PID Controller Design for Trajectory Tracking of a Quadcopter, Mathematical Modelling of Engineering Problems 9 (6) (2022).
DOI: 10.18280/mmep.090607
Google Scholar
[25]
H.I. Alkhammash, et al., Optimization of Proportional Resonant and Proportional Integral Controls Using Particle Swarm Optimization Technique for PV Grid Tied Inverter, Mathematical Modelling of Engineering Problems 10 (1) (2023).
DOI: 10.18280/mmep.100103
Google Scholar
[26]
D. Delahaye, S. Chaimatanan, M. Mongeau, Simulated annealing: From basics to applications, in: Handbook of Metaheuristics, Springer, 2018, p.1–35.
DOI: 10.1007/978-3-319-91086-4_1
Google Scholar
[27]
Z. Wang, J. Tian, K. Feng, Optimal allocation of regional water resources based on simulated annealing particle swarm optimization algorithm, Energy Reports 8 (2022) 9119–9126.
DOI: 10.1016/j.egyr.2022.07.033
Google Scholar
[28]
K. Wang, X. Li, L. Gao, P. Li, S.M. Gupta, A genetic simulated annealing algorithm for parallel partial disassembly line balancing problem, Applied Soft Computing 107 (2021) 107404.
DOI: 10.1016/j.asoc.2021.107404
Google Scholar
[29]
T. Guilmeau, E. Chouzenoux, V. Elvira, Simulated annealing: A review and a new scheme, in: 2021 IEEE Statistical Signal Processing Workshop (SSP), IEEE, 2021, p.101–105.
DOI: 10.1109/ssp49050.2021.9513782
Google Scholar
[30]
Q. Chen, et al., A virtual structure formation guidance strategy for multi-parafoil systems, IEEE Access 7 (2019) 123592–123603.
DOI: 10.1109/access.2019.2938078
Google Scholar