Heuristic-Based Positioning of Linear Reluctance Motors Using Simulated Annealing Algorithm

Article Preview

Abstract:

Due to the nonlinear magnetic characteristics of the Linear Reluctance Motor (LRM), the system exhibits overshoot and oscillatory behavior during operation. To achieve accurate rotor position control, two control strategies are implemented: a conventional Proportional-Integral (PI) controller and a Simulated Annealing (SA) algorithm integrated with a PI controller. The dynamic model of the LRM is simulated using MATLAB Simulink (version 2024a) in the d-q reference frame with real-time rotor position feedback. Three types of reference position trajectories-trapezoidal, linear, and nonlinear-are applied to evaluate the motor’s performance. The simulation results show that the SA-PI controller significantly enhances both position and velocity tracking accuracy compared to various reference position trajectories.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-46

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.A. Commins, J.W. Moscrop, C.D. Cook, Synchronous reluctance tubular linear motor for high precision applications, in: Proc. 2015 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, Australia: IEEE, 2015, p.1–6.

DOI: 10.1109/aupec.2015.7324852

Google Scholar

[2] J. Chowdhury, G. Kumar, K. Kalita, K. Tammi, S.K. Kakoty, A review on linear switched reluctance motor, Rakenteiden Mekaniikka 50 (2017) 261–270.

DOI: 10.23998/rm.65121

Google Scholar

[3] H.-K. Bae, B.-S. Lee, P. Vijayraghavan, R. Krishnan, A linear switched reluctance motor: converter and control, IEEE Trans. Ind. Appl. 36 (2000) 1351–1359.

DOI: 10.1109/28.871284

Google Scholar

[4] W.-C. Gan, N.C. Cheung, Design of a linear switched reluctance motor for high precision applications, in: IEMDC 2001 IEEE Int. Electr. Mach. Drives Conf. (Cat. No. 01EX485), Chicago, USA: IEEE, 2001, p.701–704.

DOI: 10.1109/iemdc.2001.939390

Google Scholar

[5] W.-C. Gan, N.C. Cheung, L. Qiu, Position control of linear switched reluctance motors for high-precision applications, IEEE Trans. Ind. Appl. 39 (2003) 1350–1362.

DOI: 10.1109/tia.2003.816502

Google Scholar

[6] G. Baoming, A.T. de Almeida, F.J. Ferreira, Design of transverse flux linear switched reluctance motor, IEEE Trans. Magn. 45 (2009) 113–119.

DOI: 10.1109/tmag.2008.2006193

Google Scholar

[7] L. Szabó, I. Benţia, M. Ruba, A rotary-linear switched reluctance motor for automotive applications, in: Proc. 2012 XXth Int. Conf. Electr. Mach., Vilamoura, Portugal: IEEE, 2012, p.2615–2621.

DOI: 10.1109/icelmach.2012.6350254

Google Scholar

[8] W.-C. Gan, N.C. Cheung, Development and control of a low-cost linear variable-reluctance motor for precision manufacturing automation, IEEE/ASME Trans. Mechatronics 8 (2003) 326–333.

DOI: 10.1109/tmech.2003.816827

Google Scholar

[9] L. Qiu, Y. Shi, J. Pan, G. Xu, Networked H∞ controller design for a direct-drive linear motion control system, IEEE Trans. Ind. Electron. 63 (2016) 6281–6291.

DOI: 10.1109/tie.2016.2571263

Google Scholar

[10] R. Pupadubsin, et al., Position control of a linear variable reluctance motor with magnetically coupled phases, in: ECTI-CON2010: The 2010 ECTI Int. Conf. Electr. Eng./Electron., Comput., Telecommun. Inf. Technol., Chiang Mai, Thailand: IEEE, 2010, p.1031–1035.

DOI: 10.37936/ecti-eec.201191.172479

Google Scholar

[11] S.-Y. Chen, H.-H. Chiang, T.-S. Liu, C.-H. Chang, Precision motion control of permanent magnet linear synchronous motors using adaptive fuzzy fractional-order sliding-mode control, IEEE/ASME Trans. Mechatronics 24 (2019) 741–752.

DOI: 10.1109/tmech.2019.2892401

Google Scholar

[12] S. Wang, Z. Wu, D. Peng, W. Li, Y. Zheng, Embedded position estimation using tunnel magnetoresistance sensors for permanent magnet linear synchronous motor systems, Measurement 147 (2019) 106860.

DOI: 10.1016/j.measurement.2019.106860

Google Scholar

[13] H.J. Nekad, D.K. Shary, M.A. Alawan, Position control of linear synchronous reluctance motor using a modified camel traveling algorithm-based proportional integral controller, Mathematical Modelling of Engineering Problems 11 (6) (2024).

DOI: 10.18280/mmep.110619

Google Scholar

[14] B.C. Murphy, Design and construction of a precision tubular linear motor and controller, Thesis, Texas A&M University, 2004.

Google Scholar

[15] A. Hamler, M. Trlep, B. Hribernik, Optimal secondary segment shapes of linear reluctance motors using stochastic searching, IEEE Trans. Magn. 34 (2002) 3519–3521.

DOI: 10.1109/20.717830

Google Scholar

[16] S. Li, K.W.E. Cheng, N. Cheung, Y. Zou, Design and control of a decoupled rotary-linear switched reluctance motor, IEEE Trans. Energy Conversion 33 (2018) 1363–1371.

DOI: 10.1109/tec.2018.2815564

Google Scholar

[17] H.M. El-Touni, M.K. El-Nemr, E.E.M. Rashad, Thrust force characteristics of permanent-magnet-assisted linear synchronous reluctance machines using finite element analysis, in: 2018 Twentieth Int. Middle East Power Systems Conf. (MEPCON), Cairo, Egypt: IEEE, 2018, p.998–1003.

DOI: 10.1109/mepcon.2018.8635235

Google Scholar

[18] G. Stumberger, B. Stumberger, D. Dolinar, Analysis of cross-saturation effects in a linear synchronous reluctance motor performed by finite elements method and measurements, in: 2006 12th Int. Power Electronics and Motion Control Conf., Portoroz, Slovenia: IEEE, 2006, p.1907–1912.

DOI: 10.1109/epepemc.2006.4778684

Google Scholar

[19] H.J. Ali, H.D. Almukhtar, D.K. Shary, Speed control of brushless DC motor based on online neural-PID controller, in: Proc. Cognitive Models and Artificial Intelligence Conf., Baghdad, Iraq, 2024, p.67–74.

DOI: 10.1145/3660853.3660869

Google Scholar

[20] M.A. Alawan, A.N.N. Al–Subeeh, O.J.M. Al-Furaiji, Simulating an induction motor multi-operating point speed control using PI controller with neural network, Periodicals of Engineering and Natural Sciences (PEN) 7 (2019) 1478–1485.

DOI: 10.21533/pen.v7i3.784

Google Scholar

[21] N. Kunjittipong, K. Kongkanjana, S. Khwan-on, Comparison of fuzzy controller and PI controller for a high step-up single-switch boost converter, in: 2020 3rd Int. Conf. Power and Energy Applications (ICPEA), Bangkok, Thailand: IEEE, 2020, p.94–98.

DOI: 10.1109/icpea49807.2020.9280118

Google Scholar

[22] S.I. Azid, V.P. Shankaran, U. Mehta, Fractional PI controller for integrating plants, in: 2020 16th Int. Conf. Control, Automation, Robotics and Vision (ICARCV), Singapore: IEEE, 2020, p.904–909.

DOI: 10.1109/icarcv50220.2020.9305506

Google Scholar

[23] N. Bounasla, S. Barkat, Optimum design of fractional order PIα speed controller for predictive direct torque control of a sensorless five-phase Permanent Magnet Synchronous Machine (PMSM), Journal Européen des Systèmes Automatisés 53 (2020) 437–449.

DOI: 10.18280/jesa.530401

Google Scholar

[24] W. Altalabani, Y. Alaiwi, Optimized Adaptive PID Controller Design for Trajectory Tracking of a Quadcopter, Mathematical Modelling of Engineering Problems 9 (6) (2022).

DOI: 10.18280/mmep.090607

Google Scholar

[25] H.I. Alkhammash, et al., Optimization of Proportional Resonant and Proportional Integral Controls Using Particle Swarm Optimization Technique for PV Grid Tied Inverter, Mathematical Modelling of Engineering Problems 10 (1) (2023).

DOI: 10.18280/mmep.100103

Google Scholar

[26] D. Delahaye, S. Chaimatanan, M. Mongeau, Simulated annealing: From basics to applications, in: Handbook of Metaheuristics, Springer, 2018, p.1–35.

DOI: 10.1007/978-3-319-91086-4_1

Google Scholar

[27] Z. Wang, J. Tian, K. Feng, Optimal allocation of regional water resources based on simulated annealing particle swarm optimization algorithm, Energy Reports 8 (2022) 9119–9126.

DOI: 10.1016/j.egyr.2022.07.033

Google Scholar

[28] K. Wang, X. Li, L. Gao, P. Li, S.M. Gupta, A genetic simulated annealing algorithm for parallel partial disassembly line balancing problem, Applied Soft Computing 107 (2021) 107404.

DOI: 10.1016/j.asoc.2021.107404

Google Scholar

[29] T. Guilmeau, E. Chouzenoux, V. Elvira, Simulated annealing: A review and a new scheme, in: 2021 IEEE Statistical Signal Processing Workshop (SSP), IEEE, 2021, p.101–105.

DOI: 10.1109/ssp49050.2021.9513782

Google Scholar

[30] Q. Chen, et al., A virtual structure formation guidance strategy for multi-parafoil systems, IEEE Access 7 (2019) 123592–123603.

DOI: 10.1109/access.2019.2938078

Google Scholar