Crystallization Kinetics of the Cu47.5Zr47.5Al5 Bulk Metallic Glass under Continuous and Iso-Thermal Heating

Article Preview

Abstract:

The crystallization kinetics of Cu47.5Zr47.5Al5 BMG was studied by differential scanning calorimetry (DSC) using the mode of continuous heating and isothermal annealing. It is found that Tg, Tx, and Tp, display a dependence on the heating rate in the case of continuous heating. The activation energies, Eg, Ex and Tp determined by the Kissinger method, yield 445, 264 and 285 kJ/mol, respectively. The local activation energy, E(x), was determined by the Doyle-Ozawa method, which gives the average activation energy 204 kJ/mol. On the other hand, the isothermal kinetics was modeled by the Johnson-Mehl-Avrami (JMA) equation, the Avrami exponent versus crystallization fraction was calculated at different temperatures. Details of nucleation and growth behaviors are discussed in terms of the local Avrami exponent and local activation energy during the isothermal crystallization. X-ray shows that the quenched BMG only includes the glass single phase. The BMG heated to 873 K has the precipitation of the body-center cubic (BCC) CuZr.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1052-1058

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. L. Johnson, MRS Bull. 1999, 24 (10), 42.

Google Scholar

[2] Inoue, A. Acta Mater. 2000, 48, 279..

Google Scholar

[3] C. Fan and A. Inoue, Scr. Mater. 2001, 45, 115.

Google Scholar

[4] K. B. Kim, J. Das, S. Venkataraman et. al. Appl. Phys. Lett. 2006, 89, 261917.

Google Scholar

[5] H. E. Kissinger, Anal. Chem. 1957, 29, 1702.

Google Scholar

[6] R. M. Rieiro, D. S. dos Santos, and R. S. de Biasi, J. Alloy. Compd. 2004, 363, 227.

Google Scholar

[7] H. R. Wang, Y. L. Gao, G. H. Min, X. D. Hui, and Y. F. Ye, Phys. Lett. A 2003, 314, 81.

Google Scholar

[8] Y. Z. Li, Thermal Analysis 1987, Tsinghua University Press, Beijing.

Google Scholar

[9] X. D. Jiang, H. W. Zhang, Q. Y. Wen, Z. Y. Zhong, Y. Zheng, and Z. L. Tang, Mater. Chem. Phys. 2004, 88, 197.

Google Scholar

[10] W. A. Johnson and R. F. Mehl, Am Inst Miner Pet Eng 1939, 135, 416.

Google Scholar

[11] L. Liu and K. C. Chan, J. Alloy. Compd. 2004, 364, 146.

Google Scholar

[12] M. A. Gibson and G. W. Delamore, J. Mater. Sci. 1987, 22, 4550.

Google Scholar

[13] K. F. Kelton and F. Spaepen, Acta Metall. 1985, 33, 455.

Google Scholar

[14] A. J. Drehman and A. L. Greer, Acta Metall. 1984, 32, 323.

Google Scholar

[15] M. A. Gibson, G. W. Delamore, J. Mater. Sci. 1987, 22, 4550.

Google Scholar

[16] A. Calka, and A.P. Radinski, Mater. Sci. Eng. 1988, 97, 241.

Google Scholar

[17] S. Ranganathan and M. V. Heimendahl, J. Mater. Sci. 1981, 16, 2401.

Google Scholar

[18] F. E. Luborski (Ed.), Amorphous Metallic Alloys 1983, Butterworths, London.

Google Scholar

[19] X. D. Jiang, H. W. Zhang, Q. Y. Wen, Z. Y. Zhong, Y. Zheng, and X. L. Tang, Mater. Chem. Phys. 2004, 88, 197.

Google Scholar

[20] J. W. Christial (Ed.), The theory of Transformations in Metals and Alloys 1981, Pergamon London.

Google Scholar

[21] Q. Chen, L. Liu, and K. C. Chan, J. Alloy. Compd. 2006, 419, 71.

Google Scholar

[22] D. C. Qiao, C. Fan, P. K. Liaw, et. al, Adv. Eng. Mater, 2006, 8, 714.

Google Scholar