[1]
M. Żenkiewicz: Adhezja i modyfikowanie warstwy wierzchniej tworzyw wielkocząsteczkowych. WNT, Warszawa (2000).
Google Scholar
[2]
H. Balakrishnan, A. Hassan, M. Imran, M.U. Wahit: Ageing of Toughened Polylactic Acid Nanocomposites: Water Absorption, Hygrothermal Degradation and Soil Burial Analysis. Journal of Polymer Environment Vol. 19 (2011), p.863–875.
DOI: 10.1007/s10924-011-0338-9
Google Scholar
[3]
B.E. Tiganis, L.S. Burn, P. Davis, A.J. Hill: Thermal degradation of acrylonitrile–butadiene–styrene (ABS) blends. Polymer Degradation and Stability Vol. 76 (2002), p.425–434.
DOI: 10.1016/s0141-3910(02)00045-9
Google Scholar
[4]
C. H. Ho, T. Vu-Khanh: Physical ageing and time–temperature behavior concerning fracture performance of polycarbonate. Theoretical and Applied Fracture Mechanics Vol. 41 (2004), p.103–114.
DOI: 10.1016/j.tafmec.2003.11.008
Google Scholar
[5]
A.C. Tavares, J.V. Gulmine, C.M. Lepienski, L. Akcelrud: The effect of accelerated ageing on the surface mechanical properties of polyethylene. Polymer Degradation and Stability Vol. 81 (2003), p.367–373.
DOI: 10.1016/s0141-3910(03)00108-3
Google Scholar
[6]
L. Woo, M. Ling, A.R. Khare, Y. S. Ding: Polypropylene degradation and durability estimates based on the master curve concept. Ed. L. Mallinson: Ageing Studies and Lifetime Extension of Materials. Kluwer Academic/Plenum Publishers, New York (2001).
DOI: 10.1007/978-1-4615-1215-8_55
Google Scholar
[7]
F. Greškovič, J. Varga, Ľ. Dulebová: The utilize of gamma radiation in the examination of mechanical properties of polymeric materials. Metalurgija Vol. 51, No. 2 (2012), pp.245-248.
Google Scholar
[8]
G. Weibin, H. Shimin, Y. Minjiao, J. Long, D. Yi: The effects of hydrothermal ageing on properties and structure of bisphenol A polycarbonate. Polymer Degradation and Stability 94 (2009), p.13–17.
DOI: 10.1016/j.polymdegradstab.2008.10.015
Google Scholar
[9]
A. Jensen-Spaulding, M. L. Shuler, L. W. Lion: Mobilization of adsorbed copper and lead from naturally aged soil by bacterial extracellular polymers. Water Research Vol. 38 (2004), p.1121–1128.
DOI: 10.1016/j.watres.2003.11.015
Google Scholar
[10]
H. Sakoda , J. Fisher, S. Lu, F. Buchanan: The effect of accelerated ageing of the wear of UHMWPE. Journal of Materials Science: Materials in Medicine Vol. 12 (2001), pp.1043-1047.
DOI: 10.1023/a:1012898107727
Google Scholar
[11]
S. Kahlen, G.M. Wallner, R.W. Lang: Ageing behavior of polymeric solar absorber materials – Part 1: Engineering plastics. Solar Energy, Vol. 84 (2010), p.1567–1576.
DOI: 10.1016/j.solener.2010.03.021
Google Scholar
[12]
R. Selden, B. Nyström, R. Långström: UV ageing of poly(propylene)/wood-fiber composites. Polymer Composites, Vol. 25(5), (2004), p.543–553.
DOI: 10.1002/pc.20048
Google Scholar
[13]
H. Malon, J. Martin, L. Castejon: Mechanical behavior variation of an isotactic polypropylene copolymer subjected to artificial ageing. Edited by F. Dogan: Polypropylene. InTech (2012) pp.49-62.
Google Scholar
[14]
M. Gahleitner, J. Fiebig, J. Wolfschwenger, C. Grein: Processing and morphology effects on long-term stability of polypropylene. SEM X International Congress & Exposition on Experimental & Applied Mechanics (2004).
Google Scholar