Mathematical Modelling of Temperatures in Airways during a Fire with Effects on Evacuation of Persons

Article Preview

Abstract:

The contribution presents two basic variants of fire compartmentation. A conservative standard design is confronted with an atypical design supported by the mathematical modelling of temperature field. In both the cases, the required level of safety is ensured. The atypical design in this case enables the use of more available and economically profitable products ensuring the fire safety of the structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

350-355

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Directive 2004/54/EC on minimum safety requirements for tunnels in the Trans-European Road Network. European Parliament and Council, (2004).

Google Scholar

[2] Infason, H.; Wickström U. The international FORUM of fire research directors: A position paper on future actions for improving road tunnel fire safety. Fire Safety Journal 41(2), (2006) p.111–114.

DOI: 10.1016/j.firesaf.2005.11.006

Google Scholar

[3] Ko, J.; Yoon, Ch.; Yoon, S.; Kim, J. Determination of the applicable exhaust airflow rate through a ventilation shaft in the case of road tunnel fires. Safety Science 48 (6), (2010), p.722–728.

DOI: 10.1016/j.ssci.2010.02.007

Google Scholar

[4] Carvel, R.; Beard, A. The Handbook of Tunnel Fire Safety. Thomas Telford, (2005), 514 p.

Google Scholar

[5] Čajka, R., Matečková, P. Fire Resistance of Ceiling Slab Concreted in Trapezoidal Sheet. Procedia Engineering 65, 2013, p.393–396. doi: 10. 1016/j. proeng. 2013. 09. 061.

DOI: 10.1016/j.proeng.2013.09.061

Google Scholar

[6] ISO 834-1: 1999 Fire-resistance tests - Elements of building construction - Part 1: General requirements. Switzerland: International Organization for Standardization, 1999. 25 p.

Google Scholar

[7] Kučera, P.; Pokorný, J. Determination of Temperature Conditions for a Design of Engineering Construction during a Fire. Communications – Scientific Letter of the University Žilina 13(2), (2011), p.83–87.

Google Scholar

[8] ČSN EN 13501-2+A1: 2010 Požární klasifikace stavebních výrobků a konstrukcí staveb - Část 2: Klasifikace podle výsledků zkoušek požární odolnosti kromě vzduchotechnických zařízení. Czech Republic: Czech Office for Standards, Metrology and Testing, (2010).

Google Scholar

[9] Bradáčová, I.; Kučera, P. Concrete Structures Restoration from the Fire Safety Point of View. Advanced Materials Research. 688(113), 2013, p.113–119. doi: 10. 4028/www. scientific. net/AMR. 688. 113.

DOI: 10.4028/www.scientific.net/amr.688.113

Google Scholar

[10] Floyd, J.; McDermott, R.; Hostikka, S.; McGrattan, K. Fire Dynamics Simulator (Version 5): User´s Guide. NIST Special Publication 1019-5. Washington, (2010). 222 p.

DOI: 10.6028/nist.sp.1019-5

Google Scholar

[11] Kučera, P.; Pezdová, Z. Základy matematického modelování požáru. Association of Fire and Safety Engineering, (2010), 111 p. (in Czech).

Google Scholar

[12] Cheong M K; Spearpoint M J; Fleischmann C. M. Design fires for vehicles in road tunnels, in Proceeding 7th International Conference on Performance-Based Codes and Fire Safety Design Methods, Auckland, New Zealand, (2008), pp.229-240.

Google Scholar

[12] Migoya, E.; García, J.; Crespo, A.; Gago, C.; Rubio, A. 2011. Determination of the heat release rate inside operational road tunnels by comparison with CFD calculations. Tunnelling and Underground Space Technology 26 (1), 2011, p.211–222.

DOI: 10.1016/j.tust.2010.05.001

Google Scholar

[13] Fire in Tunnels: FIT General Report, Thematic Network Fire in Tunnels, Brussels, Belgium, (2006).

Google Scholar

[14] Martinka, J.; Kačíková, D.; Hroncová, E.; Ladomerský, J. 2012. Experimental determination of the effect of temperature and oxygen concentration on the production of birch wood main fire emissions. Journal of Thermal Analysis and Calorimetry 110 (1), 2012, p.193.

DOI: 10.1007/s10973-012-2261-2

Google Scholar

[15] Martinka, J.; Balog, K.; Chrebet, T.; Hroncová, E.; Dibdiaková, J. 2012. Effect of oxygen concentration and temperature on ignition time of polypropylene. Journal of Thermal Analysis and Calorimetry 110 (1), 2012, p.485–487.

DOI: 10.1007/s10973-012-2546-5

Google Scholar