Morphology and Phase Diagram of Cyclic ABCB Tetrablock Copolymer

Article Preview

Abstract:

Microphases and triangle phase diagrams of cyclic ABCB tetrablock copolymer melts have been investigated by a combinatorial screening algorithm based on self-consistent field theory (SCFT) in two-dimensional space. Eight main stable ordered morphologies have been observed in the intermediate-segregation regime. SCFT simulation experiments reveal that the compositions of block chain in the cyclic polymer are comparable, the cyclic architecture of polymer chain has a strong topological constraint on the geometry of microphases. The morphologies and phase diagrams are helpful to control and design the suitable ordered microstructure of cyclic copolymer systems.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

1062-1068

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Tang, F. Qiu, H. D. Zhang, Y. L. Yang, Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers, Phys. Rev. E. 69 (2004) 031803.

DOI: 10.1103/physreve.69.031803

Google Scholar

[2] P. Tang, F. Qiu, H. D. Zhang, Y. L. Yang, Morphology and phase diagram of complex block copolymers: ABC star triblock copolymers, J. Phys. Chem. B. 108 (2004) 8434–8438.

DOI: 10.1021/jp037911q

Google Scholar

[3] F. Drolet, G. H. Fredrickson, Combinatorial screening of complex block copolymer assembly with self-consistent field theory, Phys. Rev. Lett. 83 (1999) 4317–4320.

DOI: 10.1103/physrevlett.83.4317

Google Scholar

[4] F. Drolet, G. H. Fredrickson, Optimizing chain bridging in complex block copolymers, Macromolecules. 34 (2001) 5317–5324.

DOI: 10.1021/ma0100753

Google Scholar

[5] B. H. Zimm, W. H. Stockmayer, The dimensions of chain molecules containing branches and rings, J. Chem. Phys. 17 (1949) 1301–1314.

DOI: 10.1063/1.1747157

Google Scholar

[6] T. Gemma, A. Hatano, T. Dotera, Monte Carlo simulations of the morphology of ABC star polymers using the diagonal bond method, Macromolecules. 35 (2002) 3225–3237.

DOI: 10.1021/ma001040q

Google Scholar

[7] M. W. Matsen, Gyroid versus double-diamond in ABC triblock copolymer melts, J. Chem. Phys. 108 (1998) 785.

DOI: 10.1063/1.475439

Google Scholar

[8] W. Zheng, Z. -G. Wang, Morphology of ABC triblock copolymers, Macromolecules. 28 (1995) 7215–7223.

DOI: 10.1021/ma00125a026

Google Scholar

[9] H. Nakazawa, T. Ohta, Microphase separation of ABC-type triblock copolymers, Macromolecules. 26 (1993) 5503–5511.

DOI: 10.1021/ma00072a031

Google Scholar

[10] Z. B. Jiang, R. Wang, G. Xue, Morphology and Phase Diagram of Comb Block Copolymer Am+1(BC)m, J. Phys. Chem. B. 113 (2009) 7462–7467.

DOI: 10.1021/jp811281t

Google Scholar

[11] K. Yamauchi, K. Takahashi, H. Hasegawa, H. Iatrou, N. Hadjichristidis, T. Kaneko, Y. Nishikawa, H. Jinnai, T. Matsui, H. Nishioka, M. Shimizu, H. Furukawa, Microdomain morphology in an ABC 3-miktoarm star terpolymer: a study by energy-filtering TEM and 3D electron tomography, Macromolecules. 36 (2003).

DOI: 10.1021/ma034840k

Google Scholar