High Yield Polyborosilazane Precursor for SiBN Ceramics

Article Preview

Abstract:

The processible and high yield polyborosilazane (PBSZ) precursor for SiBN ceramics was prepared by coammonolysis reaction of dichlorosilane and trichloroborazine. The synthesized PBSZ precursor was characterized by Fourier Transform Infrared spectroscopy (FTIR), 1H, 11B, and 29Si Nuclear Magnetic Resonance (NMR), and its ceramic conversion chemistry was investigated by differential scanning calorimetric (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA). The PBSZ precursor is a viscous liquid and changes to an insoluble solid via a cross-linking reaction between the N-H group and Si-H group as post-heated from 60 to 180°C. The insoluble solid is transformed to Si3N4 and BN amorphous structures with an approximately 95% ceramic yield after being pyrolyzed to 1000°C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

409-414

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Colombo, G. Mera, R. Riedel. J. Am. Cer. Soc. 93(2010), 1805-1837.

Google Scholar

[2] E. Krode, L. L. Ya, C. Konetschny. Mater. Sci. Eng. 26(2000), 97-199.

Google Scholar

[3] M. Jansen, H. P. Baldus. Ange. Chem. Inter. Ed. in Eng. 36(1997), 328-343.

Google Scholar

[4] M. Weinmann, T. W. Kamphowe, J. Schuhmacher, K. Müller, F. Aldinger. Chem. Mater. 12(2000), 2112-2122.

DOI: 10.1021/cm001031w

Google Scholar

[5] R. Riedel, A. Kienzle, W. Dressler, L. Ruwisch, J. Bill, F. Aldinger. Nature, 382(1996), 796-798.

DOI: 10.1038/382796a0

Google Scholar

[6] M. Weinmann, J. Schuhmacher, H. Kummer, S. Prinz, J. Q. Peng, H. J. Seifert, M. Christ, K. Muller, J. Bill, F. Aldinger. Chem. Mater. 12(2000), 623-632.

DOI: 10.1021/cm9910299

Google Scholar

[7] P. Baldus, M. Jansen, D. Sporn. Science, 285(1999), 699-703.

Google Scholar

[8] J. Wilfert, M. Jansen. J. Mater. Chem. 22(2012), 9782-9786.

Google Scholar

[9] N. Janakiraman, M. Weinmann, J. Schuhmacher. J. Am. Ceram. Soc. 85(2002), 1807-1814.

Google Scholar

[10] Z. Y. Chu, C. X. Feng, Y. C. Song, X.D. Li, J.Y. Xiao. J. Appl. Polym. Sci. 94(2004), 105-109.

Google Scholar

[11] Baldus. Adv. Sci. Tech. 7(1995), 125-132.

Google Scholar

[12] Y. Tang, J. Wang, X. D. Li. Acta Chimica Sinica. 66(2008), 1371-1376.

Google Scholar

[13] S. H. Dong, T. Zhao, C. H. Xu. J. Appl. Polym. Sci. 118(2010), 3400-3406.

Google Scholar

[14] D. F. Shriver, M. A. Drezdzon. The Manipulation of Air-Sensitive Compounds; 2nd Ed; Wiley: New York, (1986).

Google Scholar

[15] C. A. Brown, A. W. Laubengayer. J. Am. Chem. Soc. 77(1955), 3699-3700.

Google Scholar

[16] K.K. Guo, H.M. Qi, F. Wang, Y.P. Zhu. RSC Adv. 4(2014), 6330-6336.

Google Scholar

[17] J. K. Jeon, Q. D. Nghiem, D. P. Kim, J. Lee. J. Organomet. Chem. 689(2004), 2311-2318.

Google Scholar

[18] F.L. Ma, H.M. Qi, Y.P. Zhu, X.W. Ren, F. Wang. Key Eng. Mater. 575-576(2014), 81-86.

Google Scholar

[19] F. Schurz, M. Jansen. Inorg. Chem. 636(2010), 1199-1205.

Google Scholar