Flocculation of Botryococcus Braunii with Glycine

Article Preview

Abstract:

The objective of this paper was to optimize the flocculation and biomass productivity of Botryococcus braunii by using an organic carbon source glycine. The effects of culture period and glycine dose with high, medium and low levels on both solid concentration achieved and biomass productivity were conducted. It was found that extracellular polymeric substances (EPS), which promotes flocculation, was produced not only by bacterial but also by microalgae. The productivity of EPS was affected by culture period, glycine dose and mixing time. The maximum EPS of 103.3 mg/L obtained with 11 day culture period and 0.1 g/L glycine, leading to the maximum solid concentration achieved of 51 g/L, the biomass recovery rate 72%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

877-880

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. M. Brown, K. G. Zeiler: Energy Convers Manage. Vol. 34, No. 9 (1993), P. 1005-1013.

Google Scholar

[2] P. McGinnis, K. Dickinson, S. Bhatti, J. -C. Frigon, S. Guiot, S. O'Leary: Photosynth. Res. Vol. 109, No. 3 (2011), P. 231-247.

Google Scholar

[3] S. Y. Chiu, C. Y. Kao, M. T. Tsai, S. C. Ong, C. H. Chen, C. S. Lin: Bioresource Technology. Vol. 100, No. 2 (2009), P. 833-838.

Google Scholar

[4] B. Sialve, N. Bernet, O. Bernard: Biotechnology Advances. Vol. 27, No. 4 (2009), P. 409-416.

Google Scholar

[5] G. E. Molina, E. Belarbi, F. F. Acien, M. A. Robles, Y. Chisti: Biotechnol Adv. 20 (2003), P. 491-515.

Google Scholar

[6] G. C. Zitelli, L. Rodolfi, N. Biondi, M. R. Tredici: Aquaculture. Vol. 261, No. 3 (2006), P. 932-943.

Google Scholar

[7] E. M. Grima, E. H. Belarbi, F. G. Acién Fernández, A. R. Medinaa, Y. Chisti: Biotechnology Advances. Vol. 20, No. 7 (2003), P. 491-515.

DOI: 10.1016/s0734-9750(02)00050-2

Google Scholar

[8] A. K. Lee, D. M. Lewis, P. J. Ashman: Journal of Applied Phycology. Vol. 21, No. 5 (2009), P. 559-567.

Google Scholar

[9] H. L. Zheng, Z. Gao, J. L. Yin, X. H. Tang, X. J. Ji, H. Huang: Bioresource Technology. Vol. 112, (2012), P. 212-220.

Google Scholar

[10] Y. Shen, Y. Cui, W. Yuan: Appl Biochem Biotechnol. Vol. 169, No. 7 (2013), P. 2049-(2063).

Google Scholar

[11] J. W. Morgan, C. F. Forster, L. Evison: Water Res. Vol. 24, No. 6 (1990), P. 743-750.

Google Scholar

[12] J. Moreno, M. A. Vargas, H. Olivares, J. Rivas, M. G. Guerrero: J Biotechnol. Vol. 60, No. 3 (1998), P. 175-182.

Google Scholar

[13] M. M. Rebolloso-Fuentes, J. L. García Sánchez, J. M. Fernández Sevilla, F. G. Acien Fernández, J. A. Sánchez Pérez, Molina Grima E: Marine Bioprocess Engineering. Vol. 35, No. 70 (1999), P. 271-288.

DOI: 10.1016/s0168-1656(99)00080-2

Google Scholar